Главная --> Справочник терминов


Большинстве процессов Третья особенность заключается в многообразии структуры макромолекул. В большинстве полимеров каждое звено цепи содержит функциональные группы, расположение которых может быть весьма хаотичным. Наряду с сочетанием «голова к хвосту» имеются сочетания «голова к голове)' или «хвост к хвосту». Вследствие этого некоторые функциональные группы находятся при двух соседних углеродных атомах, в других звеньях функциональные группы находятся по отношению друг к другу в положении 1—4. Полифункциональность макромолекул и возможность близкого взаимного расположения функциональных групп вызы-нает многочисленные побочные реакции, протекающие одновременно с основным процессом химического превращения. К числу таких побочных процессов относится возможное внутримолекулярное взаимодействие функциональных групп, часто приводящее к образованию циклических структур или ненасыщенных «связей, а также межмолекулярные реакции, вызывающие появление поперечных мостиков между цепями макромолекул.

Магнитный момент у атомов или молекул может быть обусловлен; круговыми токами в электронной оболочке и неспаренным электронным спином. Вещества, которые обладают магнитными моментами такого рода, называются парамагнитными. В молекулах различных веществ, в том числе в большинстве полимеров, электронный парамагнитный момент скомпенсирован. Такие вещества называются диамагнитными. Однако атомные ядра, например водорода и фтора, обладают собственными магнитными моментами, связанными с их спинами. Поэтому в диамагнитных веществах поглощение энергии электромагнитного поля может осуществиться только магнитными моментами ядер. Магнитные моменты атомных электронов на три порядка больше, чем ядерные магнитные моменты, поэтому резонансные частоты при магнитном резонансе на электронах значительно выше, чем резонансные частоты на ядрах, что-определяет для этих методов различие радиотехнических схем.

Как показали проведенные измерения [48], процесс аннигиляции позитронов в полиимиде существенно отличается от обычно наблюдаемого в большинстве полимеров. Аннигиляционный спектр в полимерах характеризуется наличием, как правило, трех или четырех компонентов со средними временами жизни от 100 пс до 4 не [54, 164, 187]. Однако для полиимида наблюдается иная структура спектра, где обнаружен лишь один, причем короткоживущий, компонент с TQ = 0,388 не (рис. 10). Временное распределение хорошо аппроксимируется одной распадной прямой, угол наклона которой определяет среднее время жизни.

Существенное значение имеет взаимное расположение реакци-онноспособных функциональных групп, присутствующих в большинстве полимеров. У нерегулярных полимеров это расположение может быть весьма хаотичным, т. е. на одних участках макромолекулы функциональные группы будут находиться рядом, а на других— в положении 1,4, В зависимости от взаимного размещения этих групп резко меняется их способность вступать в различные реакции—'конфигурационный эффект. Например, при близко расположенных группах возможны те или иные побочные реакции, протекающие параллельно с основной (циклизация, образование кратных связей или мостиков и т. д.).

Существенное значение имеет взаимное расположение реакци-онноспособных функциональных групп, присутствующих в большинстве полимеров. У нерегулярных полимеров это расположение может быть весьма хаотичным, т. е. на одних участках макромолекулы функциональные группы будут находиться рядом, а на других— в положении 1,4, В зависимости от взаимного размещения этих групп резко меняется их способность вступать в различные реакции—'конфигурационный эффект. Например, при близко расположенных группах возможны те или иные побочные реакции, протекающие параллельно с основной (циклизация, образование кратных связей или мостиков и т. д.).

Если молекулярный вес достаточно мал, то полимер может полностью закристаллизоваться, что практически неосуществимо для полимера с высоким молекулярным весом. Поэтому в большинстве полимеров с достаточно высоким молекулярным весом содержатся как аморфные, так и кристаллические области.

Исследования воздействия излучения на живую клетку насчитывают значительно более долгую историю, чем изучение его действия на синтетические полимеры. С точки зрения благополучия человечества и интересов науки первая область действительно более важна. Но обе эти области знания базируются на одних и тех же основных принципах, связаны, по-видимому, с одними и теми же основными реакциями и фактически представляют собой одно целое. И здесь и там задача заключается в том, чтобы выяснить, как происходят при облучении сшивание полимерных цепей, их деструкция и ряд других реакций. В живой клетке мы имеем дело главным образом с молекулами протеинов и нуклеиновых кислот. Строение и состав этих полимеров в общем виде нам известны, но наиболее важные вопросы до сих пор ускользают от нашего понимания. До настоящего времени нам неизвестно (за исключением единственного случая с инсулином) расположение структурных единиц — аминокислот и нуклеозидов. Еще меньше мы знаем о том, как действует на них излучение и каким образом инициированные излучением ре акции вызывают в организме явление лучевой болезни, стимулируют разрушение тканей и их рост (может иметь место и то и другое) и мутации генов. Непонятным и весьма важным является вопрос о том, как малые дозы облучения, недостаточные для того, чтобы вызвать заметные эффекты в большинстве полимеров in vitro, могут создавать в клетке или в организме в целом большие изменения, приводящие к их гибели. Эти вопросы приобрели большое значение уже с момента открытия в 1895 г. рентгеновских лучей и в 1896 г. радиоактивности (Беккерель)

Нейтронное излучение обладает большой проникающей способностью, так как нейтральные частицы не отталкиваются атомными ядрами и поэтому легко сталкиваются или соединяются с ними. Быстрые нейтроны (104 эв или более) могут выбивать протоны из ядер, с которыми они сталкиваются, или могут рассеиваться упруго (подобно биллиардному шару) в столкновениях без ионизации. Медленные или тепловые нейтроны (0,025 эв или менее) захватываются, давая новые ядра, которые могут обладать радиоактивностью и распадаться с испусканием (3- или f-лучей. Эффекты, вызываемые нейтронами в большинстве полимеров, по-видимому, являются почти полностью косвенными и обусловлены вторичными излучениями; однако в металлах и ионных соединениях важные эффекты вызываются смещениями ядер в результате прямых столкновений.

веществ пробеги изменяются приблизительно обратно пропорционально плотности. На рис. 15 можно видеть, что электроны обладают проникающей способностью, на 2—3 порядка превышающей проникающую способность более тяжелых частиц, однако даже гомогенный пучок электронов с энергией 1 Мэв не может вызвать заметного эффекта в большинстве полимеров ка глубине, большей примерно 0,5 см.

Колпачковые тарелки — самый старый и отработанный тип тарелок, они универсальны и обеспечивают устойчивую работу колонн в большинстве процессов.

г дет А — TOB — изменение массы в системе за время А — В; 2ти ^тг — сумма всех масс, соответственно поступивших в систему и покинувших ее за время А — В; ms — масса, полученная или потерянная системой в результате атомных превращений (в большинстве процессов та = 0).

(76) могут быть очень сложными. Однако в большинстве процессов переработки его применение достаточно просто. Возможно также дальнейшее упрощение, так как большинство систем находится в стабильном состоянии.

Поведение компонентов и состав любой системы определяются равновесными соотношениями при условии, что для наступления равновесия было достаточно времени. Поэтому равновесие — это краевое условие, в котором время н& является фактором продолжительности. Однако в большинстве процессов, сопровождающихся переносом тепла и массы, равновесие не достигается. В связи с этим вводится понятие скорости переноса. Уравнение скорости переноса УП имеет следующий общий вид:

Хотя эффективность процесса газификации и его экономичность зависят не только от качества сырьевого материала, но и от метода его переработки и конкретной схемы газогенератора, тем не менее несомненно, что в большинстве процессов производства ЗПГ лучше и дешевле использовать легкую нефть парафинового основания с низким содержанием сернистых соединений, чем тяжелую сернистую нефть асфальтового основания. В частности, при газификации более легкого сырья значительно уменьшаются расход водорода и отложения сажи; при этом образуется меньше побочных продуктов ароматического ряда, плохо поддающихся термообработке. В легком сырье ниже содержание сернистых соединений и других веществ, отравляющих катализатор, и в процессе его газификации образуется меньше сероводорода и двуокиси углерода, подлежащих выводу из генераторного газа в последующих очистительных установках, требующих дополнительных затрат.

Вещества, содержащие серу, в той или иной степени вредны в большинстве процессов переработки ароматических углеводородов прежде всего как каталитические яды. Наиболее чувствителен к содержанию сернистых соединений в сырье процесс гидрирования ароматических углеводородов на никель-хромовых катализаторах. Так, при содержании в бензоле 0,0002% тиофена скорость гидрирования снижается на 50%, а при содержании сернистых соединений 0,0005—0,003% катализатор полностью дезактивируется [1], что объясняется образованием неактивного сульфида никеля. Очень чувствительны к сернистым соединениям и другие никельсодержащие катализаторы [2, 3]. Содержание серы в бензоле, идущем на гидрирование, в большинстве случаев не должно превышать 0,0001%. Чувствительны к отравлению сернистыми соединениями и платиновые катализаторы гидрирования. В то же время сернистые соединения не снижают скорость гидрирования в присутствии сульфидных катализаторов.

В большинстве процессов радикально-цепной полимеризации, инициируемой светом, образование полимера продолжается некоторое время и после удаления источника облучения, с постепенным уменьшением скорости процесса (рис. 45). Особенно это заметно при полимеризации соединений, полимеры которых нерастворимы в исходном мономере, например в случае полимеризации винилхлорида или акрилонитрила. Это объясняется малой подвижностью макрорадикалов в вязкой среде (раствор полимера н мономере), приводящей к уменьшению скорости реакции обрыва цепей и увеличению длительности существования радикалов. Ноли полимеры акршюнитрпла, винилхлорида или винилпдси-

В большинстве процессов экстрагирования мы стремимся к достижению

В большинстве процессов физической абсорбции величина Яф

В большинстве процессов абсорбционной очистки регенерации

полимера происходит в большинстве процессов фор-




Безводной щавелевой Бекмановскую перегруппировку Безводного фтористого Безводного нитробензола Безводного уксуснокислого Безводную щавелевую Бициклических углеводородов Бифункциональных производных Бимолекулярное восстановление

-
Яндекс.Метрика