Главная --> Справочник терминов


Деформации одноосного Пространственно-сшитые (сетчатые) эластомеры с малой частотой сетки при температуре существенно выше Тс ведут себя как идеальные эластомеры, в которых /t/ = 0. В идеальном эластомере возникающее при деформации напряжение обусловлено только изменением энтропии. Изменение энтропии происходит за счет выпрямления молекулярных клубков, когда структура эластомера становится более ориентированной. Возникновение ориентации означает уменьшение беспорядка в системе, т. е. уменьшение энтропии:

На рис. 9.10 приведена типичная кривая напряжение — деформация пространственного полимера, обладающего ясно выраженной эластичностью (кривая /). На начальном участке кривой напряжение довольно резко возрастает вследствие сопротивления узлов флуктуационной сетки, которые не успевают распадаться (участок кривой /). Часть напряжения сосредоточена и в узлах сетки химических связей. При дальнейшем росте деформации напряжение растет медленнее (участок кривой II), что обусловлено началом интенсивного распада узлов флуктационной сетки под действием все возрастающего, напряжения. Распад флуктуационной сетки облегчает перемещение сегментов, которые ориентируются в направлении растяжения. Растягивать канат, состоящий из ориентированных в одном направлении волокон, труднее, чем войлок из тех же волокон, но беспорядочно перепутанных. Ориентация макромолекул при деформации приводит поэтому снова к интенсивному росту напряжений (учас-

к дальнейшему уменьшению тангенса угла наклона кривой растяжения. В максимуме (см. рис, 86) или в области плато (см, рис. 87) крявой растяжеггия касательная к кривой горизонтальна, т, е. скорость вынужденно-эластической деформации становится равной полной скорости деформации. Напряжение, при котором это происходит, называется пределом вынужденной эластичности сгы. Вблизи максимума и в области спада напряжения замечается начало образования шейки. К концу спада напряжения формирование шейки заканчивается.

Вынужденная эластичность, так же как и высокая эластичность, зависит,от скорости дефорлшции, что указывает па ее релаксационный характер. Чем больше скорость деформации, тем боль* ше напряжение, вызывающее вынужденную эластичность. Это означает, что предел вынужденной эластичности с увеличением скорости дефориацгт повышается. Можно вывести следующую эмпирическую зависимость между <ув и скоростью деформации ъ\

ческого течения.. Последнее, очевидно, обусловлено изменением механизма деформации в наноструктурных металлах, когда наряду с действием внутризеренного дислокационного скольжения развивается зернограничное проскальзывание (ЗГП) уже при относительно низких температурах [61, 327]. На рис. 5.15приведена диаграмма «напряжение-деформация» для такого же образца Си, подвергнутого дополнительному 3-минутному отжигу при 473 К. Такой короткий отжиг не приводит к заметному росту зерен, однако ведет к возврату дефектной структуры их границ, выраженному в резком уменьшении внутренних напряжений [327]. Видно, что несмотря на аналогичный размер зерен, имеется весьма существенная разница деформационного поведения в этих двух состояниях. После кратковременного отжига вид кривой становится похожим на вид кривой, соответствующей крупнокристаллической Си. Этот результат очень важен и показывает, что на прочностные свойства наноструктурных материалов может влиять не только средний размер зерна, но и дефектная структура границ зерен.

Следует отметить, что Си после РКУ-прессования может показывать и относительно низкую пластичность при растяжении (10%) [326]. По-видимому, это связано с высокой долей малоугловых границ зерен присутствующих в образцах после определенных режимов РКУ-прессования. В работе [61] испытывали Си со средним размером зерен 210нм при сжатии. Испытание проводилось при комнатной температуре с начальной скоростью деформации 1,4 х 10~3с~1. Было также обнаружено, что деформационные кривые для Си с различным размером зерен различаются по форме. Типичными особенностями кривой деформации сжатием в случае наноструктурной Си являются: высокое напряжение течения, равное 390 МПа, значительное начальное деформационное упрочнение в узком интервале степеней деформации (примерно 5%) на начальной стадии деформации, практически полное отсутствие деформационного упрочнения на последующей стадии деформации. Напряжение течения на второй стадии составило около 500 МПа. В то же время пластичность наноструктурной Си была высока. Образцы при сжатии не разрушались даже после максимальной деформации, которая в данном эксперименте равнялось 83%.

Размер зерна в наноструктурной Си, исследованной в работе [367], намного меньше, чем типичный размер ячеек равный 0,5 мкм в поликристаллической Си, подвергнутой усталостным испытаниям [369, 370, 375]. Это говорит об ограниченной применимости данной концепции для исследования усталостного поведения наноструктурных материалов. Более того, в работе [377] показано, что в режиме низких амплитуд размер зерна меньше критического значения, равного 85 мкм, не оказывает влияния на напряжение циклической деформации. Напряжение насыщения для наноструктурного образца, отожженного при 773 К, соответствует значению, характерному для Си поликристаллов, испытанных при той же самой амплитуде пластической деформации [377]. В отличие от вышеупомянутых закономерностей в случае, когда размер зерна оказывается значительно меньше критического, наблюдается значительно более высокое напряжение насыщения.

Резина отличается большими деформациями при сравнительно низких напряжениях. Твердые же упругие тела, наоборот, характеризуются большими напряжениями при низких деформациях. Есть определенные отличия и между каучуком и резиной (сшитым каучуком). Если вести деформацию при бесконечно малой скорости, то в каучуке напряжение падает практически до нуля, т. е. он обнаруживает явные признаки вязкой жидкости. В резине же с понижением скорости деформации напряжение снижается, но до некоторого конечного значения, т. е. резина ближе по механическому поведению к твердому упругому телу.

пературы, повышение которой увеличивает скорость релаксации и, таким образом, изменяет механические свойства эластомеров. При этом при данной скорости деформации напряжение в несшитых эластомерах может снижаться до нуля, а в сшитых эластомерах (резинах) — до некоторого конечного значения, обусловленного степенью сшивания. Эта особенность поведения эластомеров должна учитываться технологом при разработке режимов переработки эластомеров.

По мере развития эластической деформации напряжение в материале увеличивается, а следовательно, растут эффективная вязкость и сопротивление вращению ротора.

Находят применение машины с компьютером — тензометры фирмы «Монсанто», комплектуемые устройством сбора и обработки информации с печатающим блоком, экстензометром (тензо-метрической приставкой для измерения действительных усилий и напряжений при растяжениях разрыва), термостатированной камерой для испытаний образцов в интервале температур от 20 до 150 °С и электронным самописцем. Тензометры измеряют напряжение и деформацию образца, показывают рассчитанные показатели прочностных и эластических свойств на ленточном самописце и записывают кривые деформации — напряжение. Испытания ведут при скорости 10—500 мм/мин и диапазоне нагрузок от 50 до 150—20000 Н.

На рис. 1.22 приведены три типа обычных термомеханических кривых е — Т. Они получены при нагревании с заданной скоростью нагруженного образца полимера. Действующая нагрузка должна быть заданной (напряжение а = const) и малой по величине, чтобы механические воздействия на полимер не приводили к изменению его структуры. Обычно термомеханические кривые получают при деформации одноосного сжатия, растяжения или сдвига.

На рис. 1.15 приведены три типа термомеханических кривых. Кривые получены при нагревании с заданной скоростью нагруженного образца полимера. Действующая нагрузка должна быть неизменной (напряжение а = const) и малой по значению, чтобы механические воздействия на полимер не приводили к изменению его структуры. Обычно термомеханические кривые получают при деформации одноосного сжатия, растяжения или сдвига. При низких температурах все полимеры деформируются так же, как и твердые тела. Если полимер не кристаллизуется, то деформация с температурой изменяется по кривой типа 1. Выше температуры стеклования Тс проявляется высокоэластическая деформация (плато высокоэластичности), а затем выше температуры текучести Гт реализуется вязкое течение с накоплением необратимой деформации. Кривая / свидетельствует о том, что полимер может находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Каждому состоянию соответствует свой тип деформации.

В случае деформации одноосного растяжения, как и при про-

На рис. 7.1 приведены три типа характерных термомеханиче-скнх кривых. Они получены при нагревании с постоянной скоростью нагруженного образца полимера. Действующая нагрузка должна быть заданной и малой по величине, чтобы механические воздействия на полимер не приводили к изменению его структуры. Обычно термомеханические кривые получают при деформации одноосного сжатия, растяжения или сдвига.

В методе ТМА применяют растяжение, сжатие, сдвиг, кручение и другие виды деформации, однако наиболее распространены деформации одноосного растяжения, сжатия и пенетрации (вдавливания в полимер сердечника с концом меньшего сечения, чем рабочая площадь образца). Установка для ТМА включает следующие блоки:

состоянии, имеет ребро Я0=1, а после f Ф^^шение этом, если объем неизменен, то ЯгЯг-Яз-!. отношение Я,/Яо=Я называется относительной длиной, или вытяжкой и ха-пактеризует меру деформации. Мера Я особенно удобна для ^исанияУбольший деформаций (100, 200, 300%). При одноосном растяжении единичный куб превращается в брусок (б) с AI-A, Я,=Я,= 1/УЯ, а при одноосном сжатии (ej —в квадратную пластинку с Я2=А3Д и А, = 1/Я2. Последний тип деформации нелегко осуществить практически, поскольку при сжатии вследствие трения на торцах обычно происходит смятие краев цилиндрического образца образование «бочки» и возникает сильная неоднородность деформации. При небольшом сжатии цилиндрических образцов (испытания на сжимающих пластометрах) со смазкой торцов и их скольжением деформация может *™*™*Р*6*™: тельно однородной и рассчитывается простым ?™™»""»*™ способом. На рис. 1.2 видно, что большие деформации одноосного однородного сжатия можно также осуществить, подвергая кубик двумерному растяжению. Это происходит, например, при раздувании резиновых оболочек (шаров). Если принять и для сжатия А,=Я, то получим случай б, при этом Я<1 (0<Асж<1)-

Ниже в качестве примера приведены экспериментальные зависимости деформационных и расчетных термодинамических параметров для полиэтилена при двухосном растяжении (рис. П.1, II.2) *. Качественный характер зависимостей сохраняется для деформации одноосного сжатия и для других полимеров: ПВХ, ПТФЭ и др.

деформации одноосного сжатия при 20 (Л)

Температурная зависимость коэффициента диффузии гептана в ПЭНП при различных значениях деформации одноосного сжатия.

** Здесь G — релаксационный модуль; С' и /'— действительные компоненты динамических функций — комплексного модуля упругости и податливости,— характеризующие упругие свойства материала; J— податливость при ползучести. Все ьти величины определены при сдвиге в отличие от предыдущих работ, где аналогичные величины рассматривались для деформации одноосного растяжения.— Прим. ред.

Повторяя все вычисления, проделанные для деформации одноосного растяжения, и определяя вязкость при сжатии К точно так же, как при любых других режимах деформации отношением (о'11/80), можно найти, что




Дальнейшее уменьшение Детального обсуждения Детонационной стойкости Диэлектрические характеристики Диэлектрических характеристик Диэлектрической постоянной Диэтиламид лизергиновой Диацильных производных Диагонально резательных

-
Яндекс.Метрика