Главная --> Справочник терминов


Дезактивации катализатора Полимеризация в растворе*. Как уже отмечалось (стр. 181), промышленные способы получения полибутадиена в растворе базируются на использовании литийорганических соединений или ионно-координационных систем, содержащих металлы переменной валентности (титан, кобальт и никель). Технологическое оформление этих процессов включает следующие основные стадии: 1) очистка мономера и растворителя; 2) приготовление шихты (смесь бутадиена с растворителем); 3) полимеризация; 4) дезактивация катализатора и введение антиоксиданта; 5) отмывка раствора полимера от остатков катализатора; 6) выделение полимера из раствора; 7) сушка и упаковка каучука.

Оформление технологического процесса получения изопрено-вых каучуков с использованием различных каталитических систем не имеет принципиальных отличий. Технологическая схема включает следующие основные стадии [22]: 1) полимеризация изопрена; 2) дезактивация катализатора; 3) стабилизация полимера; 4) водная дегазация каучука; 5) сушка каучука; 6) очистка возвратного растворителя.

Следующая технологическая стадия — дезактивация катализатора имеет целью обрыв реакции полимеризации и превращение компонентов катализатора в соединения, не вызывающие при дальнейшей об.,; ботке полимеризата структурирования или деструкции полимера. Для дезактивации катализатора применяются соединения, реагирующие с компонентами катализатора с образованием водорастворимых комплексов. К таким соединениям, в частности, относятся алифатические спирты, кислоты, амины и др. -------

Технологическое оформление процессов получения изопреновых каучуков с использованием различных каталитических систем не имеет принципиальных отличий. Так, процесс получения изопрено-вогО каучука СКИ-3 в растворе изопентана состоит из следующих основных операций: осушка растворителя; приготовление каталитического комплекса; полимеризация изопрена; дезактивация катализатора; отмывка и стабилизация полимеризата; выделение каучука из растворителя; выделение каучука из пульпы; сушка и упаковка каучука. Вспомогательными операциями являются: приготовление суспензии стабилизатора и раствора стоппера; приготовление компонентов антиагломератора; азеотропная осушка возвратного растворителя; отгонка фракции С4 и ректификация изопентан-изопреновой фракции.

На стадии метанирования наиболее важно поддержание темпера-турного режима. С увеличением содержания окислов углеводорода во входящем газе температура на выходе растет, что может привести к спеканию катализатора и его дезактивации. Поэтому при увеличении содержания СО и СО 2 реактор метанирования следует отключить до устранения причин, вызвавших это повышение. Входящий газ можно разбавлять очищенным водородом. Дезактивация катализатора метанирования происходит при попадании на него раствора К2С03.

Дальнейшая дезактивация катализатора происходит при промывке его 0,1%-ным раствором уксусной кислоты. Приготовленный таким путем катализатор позволяет проводить гидрирование, не затрагивая карбонильных групп.

Технологические схемы суспензионных процессов делятся на 2 типа. В схемах первого типа предусмотрено двухступенчатое удаление растворителя: при дросселировании с повышенного давления в реакторе до давления, немного превышающего атмосферное в дегазаторе, и далее при отпарке растворителя водяным паром в специальных колоннах; одновременно с отпаркой растворителя происходит дезактивация катализатора в ПЭ [фирмы «Сольвей» (Бельгия) и «Монтэдисон» (Италия), ОНПО «Пластполимер»]. В схемах второго типа удале-ние растворителя осуществляется на центрифуге, куда для дезактивации катализатора добавляется спирт, далее проводится сушка полимера в инертном газе [«Мит-суи» (Япония)].

При проведении процесса полимеризации этилена при повышенных температурах имеет место частичная дезактивация катализатора. Вследствие этого точное определение энергии активации из температурной зависимости скорости полимеризации на каталитической системе TiCU — Al(Alk)3 практически невозможно. Но

Перед началом опыта проводят регенерацию катализатора, для чего водоструйным насосом просасывают через реактор холодный волдух в течение 10 мин. Затем включают электрообогрев реактора и нагревают его с токе воздуха до 500 °С. При этой температуре ведут регенерацию катализатора в те-че*шс 2 ч, не допуская повышения температуры алюмоплати-шшого катализатора выше 510L1C (а алкшохромового— выше 550°С). В противном случае возможна необратимая дезактивация катализатора.

2) дезактивация катализатора, стабилизация полимера и отмывка полимеризата;

10.3.2. Дезактивация катализатора, стабилизация полимера и отмывка полимеризата

Поэтому процесс прямого гидрирования жирных кислот на стационарном катализаторе представляет большой практический интерес. На протяжении ряда лет процесс прямого гидрирования кислот на стационарном катализаторе изучался во ВНИИНефте-химе [95]. К настоящему времени накоплен значительный экспериментальный материал, который позволяет рекомендовать этот , процесс для промышленного внедрения. В качестве сырья рекомендованы синтетические жирные кислоты фракции С10—Cie. Весьма существенное влияние на процесс гидрирования оказывает фракционный состав исходных кислот. Наличие в сырье повышенных количеств низкомолекулярных кислот увеличивает коррозию аппаратуры высокого давления, а высокомолекулярные кислоты С20 и выше приводят к быстрой дезактивации катализатора.

Следующая технологическая стадия — дезактивация катализатора имеет целью обрыв реакции полимеризации и превращение компонентов катализатора в соединения, не вызывающие при дальнейшей об.,; ботке полимеризата структурирования или деструкции полимера. Для дезактивации катализатора применяются соединения, реагирующие с компонентами катализатора с образованием водорастворимых комплексов. К таким соединениям, в частности, относятся алифатические спирты, кислоты, амины и др. -------

При значительном увеличении концентрации катализатора и относительно высоком использовании мономеров эффективность катализатора снижается, так как при этом повышается роль процесса его дезактивации, а при существенном увеличении вязкости среды — и роль диффузии мономеров. Уменьшение [ц] сополимеров, по мнению ряда авторов, связано главным образом с передачей цепи через металлорганическое соединение [5, 6, 14]. С увеличением температуры сополимеризации константа реакции роста увеличивается [12]. В то же время возрастает скорость дезактивации катализатора. Поэтому изменение температуры неодинаковым образом сказывается при полимеризации на разных каталитических системах. Из рис. 2 видно, что с повышением температуры сополимеризации выход сополимера и [ц] его уменьшается; состав не изменяется [11, 13].

При полимеризации Д4 едким кали попадание из воздуха 0,001—0,003% (масс.) СО2 может полностью оборвать процесс. Реакиия (30) используется для дезактивации катализатора в готовом полимере. Так, 0,5% (масс.) кремнезема (аэросила) достаточно, чтобы предотвратить деполимеризацию при отгонке циклосилоксанов из готового ПДМС.

Примером промышленного применения метода анионной полимеризации циклосилоксанов может служить синтез диметил- и ме-тилвинилсилоксановых каучуков СК.ТВ и СКТВ-1 [3]. Равновесную полимеризацию циклосилоксанов проводят при 140 °С в присутствии полидиметилсилоксандиолята калия (ПДСК) в количестве около 0,005% (масс.) (в пересчете на КОН). ПДСК готовят нагреванием при перемешивании диметильного деполимеризата с 5—10% (масс.) твердого КОН. Такой катализатор легко распределяется затем в деполимеризате. Смесь последнего с «виниль-ной шихтой», регулятором молекулярной массы и ПДСК непрерывно подается через подогреватель в тарельчатый осушитель, откуда в токе сухого азота отгоняется часть циклосилоксанов, примерно 5% (масс.), с целью удаления остатков влаги из смеси. Сухая смесь поступает в вертикальную часть шнекового полимеризатора, где при 140 °С начинается ее полимеризация, завершающаяся в нижней, горизонтальной части аппарата, откуда каучук с помощью шнека непрерывно выгружается в тару. Затем его смешивают в вакуум-смесителе с около 0,5% (масс.) аэросила для дезактивации катализатора и при 150—160 °С и остаточном давлении 1,33—2,00 кПа удаляют находившиеся в равновесии с полимером циклосилоксаны, 10—12% (масс.), улавливают их и возвращают в цикл. Горячий полимер выгружают в тару и после охлаждения стрейнируют.

вакууме после предварительной дезактивации катализатора аэросилом, 0,5% (масс.), либо в токе горячего инертного газа в специальном аппарате с закрученным газожидкостным потоком при продолжительности контакта 15—20с. Последний метод позволяет осуществить весь процесс по непрерывной схеме [3, 19, 27].

вызывают при дальнейшей обработке полимеризата вторичных процессов (деструкции и структурирования)', приводящих к снижению качества изопренового каучука. Для дезактивации катализатора применяются соединения, реагирующие с компонентами катализатора с образованием растворимых в воде продуктов, — алифатические спирты, кислоты, амины и. др. В промышленности для этой цели чаще всего используют метиловый спирт, который можно регенерировать из отмывной воды, или воду. Смешение полимеризата с дезактиватором (стоппером) осуществляется в интенсивном смесителе 4 (рис. 54). Для обеспечения полной конверсии активных компонентов катализатора стоппер подается в значительном избытке по сравнению- со стехиометрическим количеством.

Из интенсивного смесителя 4 полимеризат поступает в аппарат с, мешалкой 5, Где в течение 15—20 мин завершается процесс дезактивации катализатора. Этот же аппарат одновременно служит емкостью, в которой осуществляется снижение давления в системе. Полимеризат из емкости 5 насосом S подается в интенсивный смеситель 7 на смешение с циркуляционной водой, подаваемой из отстойника 8 насосом 9, и расслаивается в отстойнике 8. Частично отмытый от продуктов дезактивации полимеризат направляется в интенсивный смеситель 10, куда подается умягченная вода. Смесь расслаивается в отстойнике 11. Отмытый полимеризат подается в интенсивный смеситель 13 на смешение со стабилизатором, который подается в виде углеводородного раствора или водной суспензии, и направляется на дегазацию. Продукты дезактивации каталитического комплекса выводятся насосами 9. и 12 на химическую очистку.

Рис. 55. Схема дезактивации катализатора и отмывки полимеризата:

дующийся сополимер нерастворим в метил^слориде. Дисперсия бутил-каучука, содержащая 8—12% полимера, 6—10% мономеров и метил-хлорид, вытесняется подаваемой шихтой и выводится из полимери-"затора по выводной трубе в водный дегазатор 7. Для дезактивации Катализатора в выводную трубу подают изопропиловый спирт.

Смешение полимеризата-с про"мывной водой для удаления продуктов -дезактивации каталитического комплекса осуществляется в интенсивном смесителе / (рис. 71). Смесь полимеризата и воды расслаивается в отстойнике 2. Нижний водный слой, сбдержащий водорастворимые продукты дезактивации катализатора, через сборник 3 насосом 4 откачиваются на выделение продуктов дезактивации, а частично отмытый полимеризат смешивается в интенсивном смесителе 5 с горячей циркуляционной водой, охлажденной до 35 °С в холодильнике 6 и подаваемой насосом 8 Из сборника 7. Эмульсия полимеризата и воды расслаивается в отстойнике 12. Нижний водный слой по уровню- сливается в сборник 11, откуда насосом 10 через рекуперативный теплообменник 9, после охлаждения до 25 °С возвратным растворителем, подается в интенсивный смеситель / на смешение с полимеризатом. Отмытый от примесей полимеризат сливается в сборник 13, откуда насосом 14 подается на смешение с горячей циркуляционной водой в отношении 1 : 1 для приготовления эмульсии и направляется на дегазацию. При получении масло-наполненного каучука СК.ЭПТ-ЭМ полимеризат предварительно смешивается в интенсивном смесителе 15 с предварительно подогретым углеводородным маслом стабил-ойл 18, дозировка которого определяется маркой каучука.




Динамических характеристик Динамических механических Динамической вязкостью Динамическом равновесии Дальнейшего рассмотрения Дипольным взаимодействием Диполярных апротонных Диспергирования технического Дисперсий сополимеров

-
Яндекс.Метрика