Главная --> Справочник терминов


Дальнейшей переработки Видно, что основными компонентами гидрогенизата являются фенол и n-изопропилфенол. Гидрогенизат перегоняют для отделения кубового остатка, который идет на сжигание. Полученный дистиллят подвергают ректификации для выделения хлорбензола и индивидуальных фенолов; хлорбензол и фенол возвращают в цикл производства дифенилолпропана. Таким образом, при гидрогенизации выход фенола (в % от исходной смеси) 39%, я-изопропилфе-нола получается 20,4%, а суммарный выход фенолов равен 63%. Кубовый остаток дальнейшей переработке не подвергали, так как при его повторной гидрогенизации даже в более жестких условиях дополнительно образовывалось только небольшое количество фенолов.

Имеются также заводы, где получаемые подобным образом индивидуальные углеводороды здесь же подвергаются дальнейшей переработке. Так, например, на заводе в Раис (США) аналогичная установка четкого фракционирования работает в комплексе с установками по химической переработке выделяемых фракций. На этом заводе пиролизом к-бутана получают этилен; к-бутан изомеризуется в изобутан, который алкилируется этиленом в диизопропил и т. д.

Газ пиролиза разделяют на фракции. Непредельные углеводороды подвергают дальнейшей переработке, а насыщенные углеводороды

В состав нефтехимических предприятий могут быть включены установки гидродеалкилирования толуола, гидрирования бензола в циклогексан, синтеза капролактама из циклогексана и многие другие, потребляющие водород. Но даже при включении таких процессов не возникает необходимости в производстве специального водорода. В то же время возможны дополнительные источники получения водорода, например каталитическое дегидрирование бутана в изобутилен, дегидрирование последнего с получением бутадиена, деалкилирование толуола в присутствии водяного пара. Хотя полученный водородсодержащий газ нуждается в дальнейшей переработке для выделения водорода (из-за низ'кой концентрации в нем Н2), однако в целом нефтехимическое предприятие может иметь от 0,5 до 3% избыточного водорода на перерабатываемое сырье пиролиза. Последний часто используется только как топливо, но в ряде случаев его можно использовать и в переработке нефти.

Главным методом первичной переработки каменноугольной смолы является ректификация с получением фракций, подвергающихся дальнейшей переработке с получением соответствующих товарных продуктов. Относительно высокая термическая стабильность основных компонентов каменноугольной смолы позволяет широко использовать этот, хорошо освоенный, высокопроизводительный и легко управляемый процесс. Ступенчатое разделение каменноугольной "смолы с помощью растворителей [41, с. 255] не имеет особых перспектив. Хотя при разделении смолы растворителями ослабляются вторичные процессы термической конденсации, использование больших объемов растворителей, удаление из них экстрактов и рафинатов связано с существенными энергетическими затратами и потерями, поэтому экономически процесс не имеет особых преимуществ. К тому же при отделении растворителя возможно термическое разложение его. Невелика и селективность холодного фракционирования сложных смесей из-за неизбежного сопряженного растворения компонентов.

Поскольку прямой ректификацией каменноугольной смолы, за исключением некоторых схем [2, с. 33; 3, 133—139], нельзя получить узкие фракции, обогащенные тем или иным полициклическим ароматическим углеводородом, выделению последних предшествует ректификация широких фракций смолы (антраценовой, поглотительной, пековых дистиллятов). Полученные таким обра-. зом одна или несколько обогащенных фракций подвергают дальнейшей переработке. Для выделения чистых продуктов применяют как физические, так и химические методы. Если выделить чистый продукт одним методом затруднительно, целесообразно сочетать разные приемы разделения.

Имеются также заводы, где получаемые подобным образом индивидуальные углеводороды здесь же подвергаются дальнейшей переработке. Так, например, на заводе в Раис (США) аналогичная установка четкого фракционирования работает в комплексе с установками по химической переработке выделяемых фракции. На этом заводе пиролизом к-бутапа получают этилен; к-бутан изомеризуется в изобутан, который алкплируется этиленом в диизопропил и т. д.

В настоящее время на адсорбционных установках подготовки газа к дальнему транспорту и подготовке газа к дальнейшей переработке применяются вертикальные адсорберы периодического действия. Поток осушаемого газа движется фронтом перпендикулярно к оси аппарата по направлению оси. Отношение высоты слоя адсорбента к диаметру больше единицы и составляет 1,3 - 1,5. Одним из основных параметров работы схем адсорбционной осушки газа является гидравлическое сопротивление адсорберов. С возрастанием гидравлических сопротивлений снижаются расходы осушаемого газа, сокращается срок безкомпрессорного периода эксплуатации. Вследствие этого существует необходимость увеличения коэффициента сжатия на ДКС. Как показывает опыт работы установок на месторождении Медвежье, потери давления в отдельных адсорберах при высоте слоя 3,5 метра могут достигать 0,7-0.8 МПа, что составляет потерю давления до 10-20% и, соответственно, такое же увеличение коэффициента сжатия ДКС. Рост гидравлического сопротивления происходит из-за разрушения адсорбента по естественным причинам и несоблюдения режимов эксплуатации адсорберов. Анализ работы новых адсорберов фронтального типа производительностью 10 млн.н.м3/сут для месторождения Ямала показывает, что для осушки и извлечения углеводородов необходимо-иметь аппараты диаметром 3,6 м и высотой слоя 8-9 м. На свежем адсорбенте такие аппараты будут иметь гидравлическое сопротивление около 0,2 МПа, а по мере старения адсорбента до i .0-1.5 МПа, что, естественно, много для схемы подготовки газа. Величина линейной скорости 0,15 м/с, обеспечивающая допустимую массовую скорость в слое адсорбента, при давлении адсорбции 7,0-8.0 МПа является определяющей при проектировании и эксплуатации. Вертикальные адсорбера фронтального типа имеют конструкцию, при которой не эффективно используется внутренний объем аппарата. Поэтому при

Гранулированием называется процесс отверждения расплавленных веществ с образованием мелких частиц (гранул), напоминающих по форме крупу. Гранулированные нитропродукты имеют ряд преимуществ при дальнейшей переработке и применении, поэтому легко застывающие нитропродукты часто подвергают гранулированию.

Трибоэлектричество связано с переносом электрического заряда и возникает при соприкосновении двух различных материалов, причем этот эффект сильно увеличивается при их трении друг о друга. В процессах переработки полимеров проблема трибоэлектричества возникает на всех стадиях транспортировки полимеров [20]. Частицы пыли притягиваются к отформованным изделиям, инородные частицы попадают в наносимый полимерный слой, полимерная «стружка» прилипает к отливкам, с которых срезаются литники, пленки обвиваются вокруг роликов и прилипают к приводным ремням и направляющим пластинам. Волокно при формовании накапливает заряд, препятствующий его дальнейшей переработке на стадиях вытяжки и прядения. Когда накопленный заряд достигает больших значений, он может разряжаться на близлежащие предметы с образованием искры, вызывая пожары, или «ударять» при прикосновении.

Легкое масло (с темп. кип. до 180°С), которое составляет 0,5—1,0% от взятой смолы: В нем содержатся ароматические углеводороды — бензол, толуол, ксилолы и др., выделяемые из него при дальнейшей переработке. , При температурах от 180 до 300° С собирают еще четыре вида масел: фенольное, нафталиновое, поглотительное и антраценовое. Из них различными методами извлекают фенол, крезолы, нафталин, антрацен, карб-азол и фенантрен. Остаток от перегонки каменноугольной смолы — черная, размягчающаяся при нагревании масса — пек, широко используется в дорожном строительстве, в производстве кровельных материалов, электродов и др.

Обогащенный водяным паром и углекислотой и нагретый до 400—450° С метан поступает в трубы, заполненные катализатором конверсии (ГИАП-3). В газовой смеси поддерживается соотношение СШ : НаО : СОз = 1,0 : 1,3 : 0,7. Температура катализатора в активных зонах печи достигает 800° С. Отходящие дымовые газы с температурой 900° С поступают в котел-утилизатор. Конвертированный газ, пройдя систему охлаждения, направляется для дальнейшей переработки.

Бутадиеновые каучуки, получаемые в отсутствие растворителя. В зависимости от способа полимеризации и условий дальнейшей переработки эти каучуки подразделяются следующим образом: с — стержневой (только СКВ), б — бесстержневой, р — рафинированный, в — вальцованный, Д — диэлектрической, Щ — пищевой, а также П — содержащий полидиены. Помимо этого марки каучука отличаются пластичностью с интервалом в 0,05. Всего в СССР выпускается 37 торговых марок СКВ, СКВ и СКБМ.

Способность системы сохранять дисперсность во времени при отсутствии внешних астабилизующих воздействий далеко не исчерпывает требований к устойчивости синтетических латексов. В отличие от латексов — полупродуктов эмульсионных каучуков, которые должны сохранять устойчивость лишь на стадиях полимеризации и отгонки незаполимеризовавшихся мономеров, товарные латек-сы подвергаются в процессе их получения и переработки ряду дополнительных специфических воздействий: механических [8—12], замораживанию-оттаиванию [13—16], испарению влаги с поверхности и в объеме [8, 17, 18], а также в латексы вводят электролиты [9, 19—24], наполнители, неионные эмульгаторы в качестве стабилизаторов [23, 25—28]. Во многих случаях требуется ограниченная устойчивость к одним и высокая — к другим коагулирующим воздействиям. Например, при проведении процесса агломерации частиц латекс должен обладать лишь ограниченной устойчивостью к агломерирующим воздействиям, препятствующей макрокоагуляции; этот же латекс в процессе дальнейшей переработки при получении на его основе пенорезины должен обладать высокой устойчивостью к механическим воздействиям, но ограниченной устойчивостью к действию специфических химических агентов — латекс должен быстро желатинировать. (Иногда желательно даже, чтобы латекс желатинировал при повышенной температуре без введения специальных агентов. Такой процесс положен, например, в основу одного из способов получения пенорезинового подслоя при производстве ковров.)

шиеся в буфере непрореагировавшие углеводороды выводятся из системы для дальнейшей переработки.

Детальное рассмотрение процессов дальнейшей переработки получающихся при этом полупродуктов (олефинов, альдегидов, кислот, спиртов и других веществ) выходит за рамки настоящей книги, и поэтому их описание не приводится. В книге указываются только основные направления их использования. С последними достижениями советской науки и техники в этой области читатель может ознакомиться по изданной ранее литературе [3,4].

Природные газы после очистки и осушки могут непосредственно поступать на переработку. Попутные газы, содержащие большое количество тяжелых углеводородов, как правило, поступают на газобензиновый завод, где подвергаются отбензиниванию, т. е. выделению углеводородов Са и выше. Полученную смесь, называемую нестабильным газовым бензином, направляют на стабилизацию и фракционирование, в результате которого выделяются или отдельные углеводороды (этан, пропан, к-бутан, изобутан, н-пентан, изопентан и др.) или их фракции и стабильный газовый бензин. Степень чистоты продуктов определяется экономическими соображениями и потребностью в отдельных видах углеводородного сырья. Сухой газ после выделения тяжелых углеводородов используется в качестве топлива или является сырьем для дальнейшей переработки.

Регенерированный абсорбент охлаждается до —30° С холодным потоком •насыщенного абсорбента, насыщается продуктом верха деэтанизатора, охлаждаясь до —40° С, и после этого подается на орошение абсорберов. Извлеченные из газа жидкие углеводороды отпускаются потребителю для дальнейшей переработки.

Уместно напомнить, что при низкотемпературной конверсии основной продукцией является газ, состоящий из 60 об. %] метана, 20 об. % водорода и 20 об. %: окислов углерода (последние главным образом в виде двуокиси углерода). Побочный продукт получается при условиях, описанных в гл. 6, и, что вполне очевидно, прежде чем быть выданным в качестве ЗПГ, нуждается в дальнейшей доработке. Стадия гидрогазификации, на которой мгновенно поглощается избыточный водород, создаются предпосылки для дальнейшей переработки дополнительного количества сырья и, помимо этого, гораздо лучше используется пар, очевидно, наиболее предпочтительная промежуточная ступень как с точки зрения повышения экономичности процесса в целом, так и с точки зрения получения требуемой конечной продукции (см. рис. 8).

дальнейшей переработки по одному из наиболее подходящих способов газификации. При данном способе расход водорода значительно ниже, чем при осуществлении 'процесса в реакторе ГПЖС. Наиболее выгодным преимуществом в предшествующей гидрокрекингу операции разгонки по фракциям является возможность объединить легкогазифицируемые полупродукты, получаемые при разгонке, с аналогичными материалами, получаемыми при гидрокрекинге, и подавать эту смесь на низкотемпературную конверсию или другой аналогичный технологический процес газификации.

Состав конвертированного газа должен удовлетворять определенный требованиям, так как в результате его дальнейшей переработки необходимо получить водород,технологический или топливный газ заданного состава. Конвертированный газ характеризует стехеометриче-ским показателем конверсии 5 , который различен для производств:

Каталитическая очистка природного газа от газоконденсата. Все больше вновь открываемых месторождений природного газа являются га--зоконденсатными. Основное количество конденсата выделяется на промыслах в системах низкотемпературной сепарации, но всегда значительная часть его в капельно-жидком состоянии уносится вместе с газом в магистральный газопровод, что снижает его пропускную способность. Создание условий транспорта бесконденсатного газа является одной из актуальных проблем транспорта газа на далекие расстояния. Остаточный или весь конденсат может быть конвертирован в метан. В отдельных случаях низкотемпературной конверсии могут быть подвергнуты нефтезаводские газы со значительным содержанием водорода, малопригодные для дальнейшей переработки и сжигания в печах /98, 122, 1237.




Действием излучения Действием кислорода Действием механической Действием метилового Действием муравьиной Действием нитрующей Действием оснований

-
Яндекс.Метрика