Главная --> Справочник терминов


Эластических деформаций Вынужденная высокоэластичность (квазиэластичность) - свойство твердых полимерных материалов испытывать при приложении внешних напряжений большие обратимые деформации, имеющие тот же механизм, что и высоког эластические деформации (см.). После снятия приложенных напряжений происходит постепенное восстановление первоначальной формы, ускоряющееся при нагревании или набухании.

До 100- 110 полпметилыетакрилат, полученный блочным методом, остается в твердом стекловидном состоянии. Выше тгой температуры начинается постепенный переход полимера в эластическое состояние. При дальнейшем повышении температуры эластические деформации полимера возрастают и начинает появляться некоторая, нее более возрастающая пластичность. При 180 200" полимер полностью переходит в пластическое состояние, а выше 260-270' постепенно разрушается.

Твердое стекловидное состояние полимера сохраняется до Ч0°. Выше этой температуры полимер постепенно переходит в эластичное состояние, причем эластические деформации увеличиваются с повышением температуры. Одновременно в полимере появляется пластичность, возрастающая с повышением температуры. При 145—155е полистирол можно перерабатывать в изделия прессованием, а при 180—220°—литьем под давлением. Выше 200° начинается термическая и окислительная деструкция полимера, ускоряющаяся с повышением температуры (рис. 93). При температуре около 300° полистирол разрушается, основным продуктом деструкции является мономер. В атмосфере азота деструкция полимера происходит при значительно более высокой температуре: при 300° полистирол де-гюлимеризуется в азоте крайне медленно (рис. 94) и только при

Переход от упругой деформации к высокоэластической у полимеров сопровождается возрастанием механических потерь и прохождением их через максимум (рис. II. 12). В соответствии с этим температура механического стеклования Тм. с определяется как температура, которой соответствует максимум механических потерь*. Ее следует рассматривать как температуру, при которой практически перестает проявляться высокоэластичность.. Амплитуда деформации не влияет на Гм. с, так как по условию деформация достаточно мала. При больших напряжениях и деформациях у полимеров возникают качественно новые явления (вынужденно-эластические деформации и разрушение). Закономерности, аналогичные представленным на рис. 11.11 и 11.12, наблюдаются, как было отмечено выше, при действии на полимеры переменных электрических полей. В этом случае роль модуля упругости играет диэлектрическая проницаемость, а механических потерь — диэлектрические потери. Электрические, поля действуют на те структурные

стеклования ав близок к 0 и в образце уже при малых напряжениях развивается высокоэластическая деформация. По мере понижения температуры 0В возрастает, поскольку для перегруппировки участков цепей требуются все большие напряжения, и в конце концов становится выше прочности испытываемого полимера (стп). Иными словами, при достаточно низкой температуре разрыв макромолекул под действием приложенной силы, а следовательно, и нарушение целостности материала происходит раньше, чем успевают переместиться их отдельные участки. Эта температура называется температурой хрупкости полимера (7\р). Дальнейшее понижение температуры несколько увеличивает напряжение, необходимое для разрыва (стп), но разрыву уже не предшествуют заметные вынужденно-эластические деформации материала. Кривая растяжения такого образца полимера показана на рис. V. 18 (кривая 2).

му никакой перегруппировки сегментов под действием силы не происходит. Это и определяет незначительную величину деформации при разрушении. Вынужденно-эластические деформации в хрупких полимерах развиться не успевают, но вследствие наличия остаточного свободного объема в стеклообразном полимере (порядка 2,5%) происходит его хрупкое разрушение при деформации около 1% (или немного больше), а разрушение силикатных стекол — при деформации около 0,1%.

2. Эластичность в полимере в отличие от низкомолекулярных жидкостей приводит к постепенному нарастанию напряжений. На рис. 11.9 показано, как нарастают напряжения сдвига в системе, когда в ротационном вискозиметре мгновенно задается определенная скорость вращения цилиндра. В низкомолекулярной жидкости, когда эластические деформации отсутствуют, сразу после включения мотора устанавливается предельное напряжение сдвига (показано пунктиром). В расплаве (или растворе) полимера напряжения возникают постепенно в соответствии с постепенным развитием

4. Эластические деформации, накапливающиеся при течении, ре-лаксируют при выходе из капилляра. Это приводит к сокращению струи. Если струя длинная (как, например, при непрерывном про-давливании полимера через экструдер), то сокращение ее длины незаметно; однако оно проявляется в «разбухании» струи, увеличении ее поперечного сечения по сравнению с сечением капилляра, как это показано на рис. 11.4. Чем выше эластичность расплава, тем больше увеличивается диаметр струи. Это явление приводит к неоо-ходимоети сложных (и неточных) расчетов диаметра отверстия, которое обеспечит получение профиля экструдата необходимого диаметра и формы.

Итак, полимеры в вязкотекучем состоянии являются высоковязкими жидкостями, в которых наряду с течением развиваются значительные эластические деформации. Если полимер имеет узкое молекулярно-массовое распределение, то несмотря на проявление эластичности он течет как ньютоновская жидкость. При широком молекулярно-массовом распределении в полимере развивается значительная аномалия вязкости — зависимость вязкости от напряжения и скорости сдвига. При больших напряжениях сдвига развиваются столь значительные эластические деформации, что полимер оказывается упругонапряженным и перестает течь. Если же полимер находится в растворе, то распад узлов флуктуационной сетки и ориентации сегментов достигают некоторого предела, зависящего от природы полимера и концентрации раствора, когда далее с ростом напряжения сдвига надмолекулярная структура больше не меняется и раствор снова течет как ньютоновская жидкость.

Как уже указывалось, вынужденно-эластические деформации могут проявляться только под влиянием больших напряжений. Поэтому после прекращения действия деформирующего усилия скорость исчезновения аыцуждецно-эластичес^их деформаций очень мала и при температуре ниже Тс опи не снимаются. При температурах пыше 7Y образец полностью восстанавливает свои размеры. Таким образом, деформация стеклообразных полимеров всегда яо-С]П обратимый характер.

при механических воздействиях существенно не изменяется. При больших же напряжениях и деформациях возникают качественно новые явления (вынужденно-эластические деформации и разрушение). Большие напряжения влияют существенно и на время релаксации т, а возникающие при этом деформации изменяют структуру полимера.

Нестабильность струи вызвана развитием в потоке больших эластических деформаций в результате периодических (пульсирующих) изменений в объемном расходе полимерной жидкости Q или ориентации структурных элементов текущего полимера в пристенных слоях, вследствие чего происходят уменьшение кинетической подвижности макромолекул и локальное проявление эффекта механического стеклования.

рителях и к эластическим деформациям. Степень набухания и величины эластических деформаций определяются частотой поперечных связей и нарастают с уменьшением количества поперечных мостиков. С увеличением числа поперечных связей эластичность постепенно сменяется упругостью, затем снижается упругость и возрастает хрупкость.

Так, нарастание температуры стеклования поливинилхло-рида наблюдается только при степени полимеризации не выше 50. Дальнейшее увеличение длины цепей макромолекул не вызывает заметного изменения температуры стеклования. Это объясняется тем, что возникновение эластических деформаций полимера связано лишь с перемещением отдельных участков макромолекулярных цепей, неличина этих деформаций

При температуре текучести полимера начинается интенсивное скольжение макромолекул относительно друг друга, определяемое подвижностью всей цепи в целом. Поэтому температура текучести неизменно возрастает с увеличением молекулярного веса полимера. Таким образом, с повышением степени полимеризации линейного полимера интервал между температурой текучести и температурой стеклования все возрастает, т. е. увеличивается область высокоэластических деформаций. На рис. 11 приведены результаты определения на динамометрических весах Тс и Тт

Чтобы решить поставленную задачу, нужно располагать данными о начальных и граничных условиях, а также подобрать соответствующее уравнение состояния, связывающее напряжения с деформациями. При равновесных условиях и малых деформациях поведение несжимаемых эластомеров можно описать с помощью равновесного модуля упругости, который удается связать с молекулярной структурой. В случае больших эластических деформаций, когда зависимость напряжение — деформация становится нелинейной, задача существенно усложняется. Впервые более или менее корректное уравнение состояния для чисто упругого изотропного материала было предложено Фингером [261:

металлическими). В температурном интервале между Тпл и Тс кристаллические полимеры обладают большой гибкостью. При растяжении они способны к развитию больших деформаций. Типичная деформационно-прочностная кривая кристаллического полимера представлена на рис. V. 20. Развитие больших деформаций («холодного течения») кристаллических полимеров, так же как и вынужденно-эластических деформаций стеклообразных, происходит через образование шейки с постепенным переходом всего материала в шейку. При образовании шейки и в аморфных и в кристаллических полимерах происходит переход от изотропного к анизотропному (ориентированному) состоянию. Такой переход в кристаллическом полимере сопровождается плавлением (разрушением) ис-ходных кристаллических областей под действием механических напряжений, переориентацией участков макромолекул, которые ориентируются в направлении растяжения и рекристаллизацией. Вновь образующиеся кристаллиты в отличие от кристаллитов ш> ходного материала располагаются анизотропно. Напряжение, coof' ветствующее максимуму на кривой растяжения кристаллического полимера, называют напряжением рекристаллизации (ар).

1. Аномалия вязкости, как уже было показано, является наиболее прямым следствием эластических деформаций. Нарушение способности к сегментальному движению в результате перехода мак-ромолекулярного клубка в унругодеформированное состояние приводит к снижению затрат на внутреннее трение сегментов и к снижению вязкости. Поскольку процесс этот захватывает с ростом скорости сдвига все большее число молекул, вязкость постепенно падает, что характерно для полимеров с широким молекулярно-мас-совым распределением.

эластических деформаций клубков макромолекул в направлении сдвига. При большой скорости сдвига флуктуационная сетка не может быстро разрушиться и в системе возникают напряжения, большие, чем те, которые могут быть обусловлены собственно сопротивлением вязкому течению. После разрушения флуктуационнои

В основе современной теории эластичности каучука лежат представления о молекулярно-кинетическом строении каучука. Теория эластичности раскрывает механизм эластических деформаций, устанавливает причины релаксационного характера этих деформаций. Сущность современных представлений о молекулярно-кинетическом строении каучука заключается в том, что молекула каучука состоит из молекулярных звеньев, обладающих способностью изменять свое взаимное расположение благодаря непрерывному вращательному и колебательному движению вокруг простых связей. Вследствие непрерывного хаотического теплового движения молекулярных звеньев молекулы каучука находятся не в растянутом, а в свернутом состоянии, как это изображено на рис. 15 (стр. 82), форма молекул при этом все время меняется.

Таким образом, приведенный выше экспериментальный материал свидетельствует о том, ггго разрушению всех полимерных материалов предшествуют очень большие обратимые деформации, имеющие характер эластических или вынужденно-эластических деформаций. Без предварительной деформации, т, е. хрупко, полимеры разрушаются только ниже температуры хругткостп. При этом они полностью теряют специфические «полимерные свойства»,

денно-эластических деформаций и ,зону хрупкости. Тем-




Электронов находящихся Электронов вследствие Электроно акцепторных Электроплитке загружают Элементов александрова Эффективного применения Элементов структуры Элиминирование приводящее Эмпирические константы

-
Яндекс.Метрика