Главная --> Справочник терминов


Формирования полимерного Прочность адгезионного соединения зависит не только от взаимодействия молекул на границе фаз, но и от ряда других факторов (условия формирования адгезионного соединения, продолжительность контакта поверхностей, скорость приложения нагрузки и т. д.); существенное значение имеют механические свойства соединенных материалов, которые могут отличаться от соответствующих показателей тех же материалов, взятых в отдельности, вследствие изменения их структуры под влиянием силового поля твердой поверхности [53] —эффект дальнодействия.

Прочность адгезионного соединения зависит не только от взаимодействия молекул на границе фаз, но и от ряда других факторов (условия формирования адгезионного соединения, продолжительность контакта поверхностей, скорость приложения нагрузки и т. д.); существенное значение имеют механические свойства соединенных материалов, которые могут отличаться от соответствующих показателей тех же материалов, взятых в отдельности, вследствие изменения их структуры под влиянием силового поля твердой поверхности [53] —эффект дальнодействия.

Если в процессе формирования адгезионного шва повышение температуры контакта Тк, увеличение времени контакта tK и давления Р способствуют увеличению адгезии, то при его разрушении повышение температуры расслаивания Тр, увеличение времени действия деформирующей силы tp (или уменьшение скорости расслаивания v) будут сопровождаться уменьшением расслаивающего усилия. Последнее понятно, если распространить пред-

где /Ci — коэффициент, учитывающий природу адгезива и субстрата, а также влияние факторов, действующих в процессе формирования адгезионного шва; иг_2 — кажущаяся энергия активации адгезионного разрушения; R — универсальная газовая постоянная.

Если представить себе упрощенную модель формирования адгезионного шва в виде тела, погруженного в высоковязкую жидкость, то напряжение, необходимое для извлечения тела из жидкости, пропорционально глубине погружения тяжа, т. е. деформации вязкого течения. Если тяжи не извлекаются, а разрушаются, то коэффициент /d отражает число образующихся (вследствие заполнения микропор) тяжей полимера и пропорционален деформации вязкого течения (если тяжи имеют цилиндрическую

Итак, чем лучше заполнение дефектов поверхности, тем полнее реализуются условия межмолекулярного или химического взаимодействия, природа которых может быть различна. Если заполнение микродефектов происходит вследствие развития деформации вязкого течения е, то влияние на адгезию факторов, действующих в процессе формирования адгезионного шва, можно учесть, зная зависимость е от Тк, Plt tK. Зависимость s от Р1 дана в виде [401, с. 88]:

По мере того как будет реализовываться способность полимера заполнять микродефекты, роль факторов, влияющих на адгезию в процессе формирования адгезионного шва, будет уменьшаться. Наступит момент, когда увеличение Тк, Р и tK не будет сопровождаться ростом (Тр. При развитии обратимой деформации такое «насыщение» логически вытекает из стремления высокоэластической деформации еэл развиться до равновесного значения. При деформации только вязкого течения пределом упрочнения адгезионного шва является максимальное заполнение микродефектов. Таким образом, уравнение (11.27) справедливо только в определенном интервале ТК1 Р, tK. В дальнейшем в результате заполнения микродефектов противодействие субстрата внешнему давлению приводит к уменьшению силы, вызывающей течение. Таким образом, на последней стадии давление Р становится убывающей функцией времени Рк = / (tK), что и обусловливает стремление адгезионной прочности со временем к предельному значению. При адгезии полиэтилена к целлофану (когда расплав полиэтилена наносится на целлофан, не размягчающийся при температуре контакта) затекание полиэтилена в микродефекты целлофана обусловливает увеличение числа контактов активных групп полиэтилена с активными группами целлофана. Развитие реологических процессов происходит во времени и интенсифицируется с повышением температуры и давления контакта. По мере заполнения микродефектов процесс затекания замедляется и затем прекращается. Повышение давления должно сопровождаться увеличением числа контактов по мере затекания до известного предела. При большом давлении наблюдается так называемое механическое стеклование адгезива, затрудняющее развитие реологических процессов.

В процессе формирования адгезионного шва в равной мере вероятны как диффузия частей макромолекулы размягченного ад-гезива в субстрат, так и затекание адгезива в микродефекты, находящиеся на поверхности субстрата. Непосредственная связь между глубиной затекания адгезива в микродефекты силикатного стекла и адгезией была установлена экспериментально [390, с. 203]. После окончания формирования адгезионного шва его прочность зависит от режима расслаивания: скорости расслаивания, температуры расслаивания и условий деформации, определяющих концентрацию напряжений на поверхности, разделяющей адгезив и субстрат.

В последнее время опубликован ряд работ [22, 50, 51], в которых подвергнуты критике существующие теории адгезии и в качестве наиболее общей теории предложена реологическая теория адгезии, или теория механической деформации адгезионных соединений. Такая теория могла бы быть полезна, если бы она дала возможность понять причины существования адгезии на границе раздела фаз. Однако эта теория вообще не дает ответа на вопросе причине адгезии между двумя твердыми телами или твердым телом и жидкостью и может рассматриваться не как теория адгезии, а, скорее, как теория адгезионных соединений. Действительно, согласно Шарпу [51], прочность адгезионной связи не определяется межфазными силами, так как чисто адгезионное разрушение встречается очень редко. Вряд ли такое положение может быть приемлемым. Мы считаем [52], что прежде всего необходимо четкое разделение двух понятий — адгезии и адгезионной прочности. Существует понятие адгезии как физического явления [12, 13] и определение адгезии как термодинамической величины. Одновременно существует и другое понятие — «адгезионная прочность» соединения, относящееся к области разрушения твердых тел. Адгезионная прочность является кинетической величиной, зависящей от скорости расслаивания, а не равновесной характеристикой. Хорошо известно, что теоретическая прочность твердых тел не соответствует их реальной механической прочности. Теоретическая прочность определяется молекулярными силами, в то время как реальная прочность зависит от дефектов структуры и других факторов. Процесс деформации твердых тел является неравновесным и связан с диссипацией энергии. Несоответствие между термодинамически вычисленной работой адгезии и определенной экспериментально адгезионной прочностью является результатом того, что при разрушении адгезионного соединения его прочность определяется в неравновесных условиях. Поэтому можно ожидать, что между понятиями «адгезия» и «адгезионная прочность» соответствие будет существовать только в том случае, когда последняя определяется в термодинамически равновесных условиях разрушения идеальной структуры, т. е. при деформации с бесконечно малой скоростью. Таким образом, при постоянстве термодинамической работы адгезии (величины, определяемой только природой взаимодействующих поверхностей) работа разрушения адгезионного соединения может изменяться в зависимости от многих факторов. Поэтому термодинамическая работа адгезии, если она правильно определена (см. выше), является единственной величиной, характеризующей адгезию и имеющей физический смысл независимо от условий испытания или условий формирования адгезионного соединения, приводящих к тем или иным дефектам.

Это прежде всего касается первой части монографии. Значительно больше внимания уделено молекулярному взаимодействию в зоне контакта, сделана попытка анализа этого вопроса с позиций взаимодействия конденсированных фаз. Приведен материал по адсорбции полимеров на различных поверхностях и показана связь этого явления с адгезией; подробно рассмотрены вопросы термодинамики адгезии и методы измерения поверхностного натяжения. Гораздо подробнее рассмотрены аспекты проблемы формирования адгезионного контакта, систематизирован материал о влиянии твердой поверхности на структуру и свойства пленок полимеров. Кроме методов измерения адгезионной прочности рассмотрены методы изучения внутренних напряжений.

Разумеется, все эти объекты специфичны. Но используемые материалы —• неорганические и полимерные клеи, связующие, покрытия, эмали и металлические припои — должны иметь общее свойство, а именно способность образовывать прочное соединение с поверхностью другого материала. Общими, весьма сходными оказываются многие аспекты адгезии материалов различной природы, что легко обнаружить при анализе закономерностей формирования адгезионного контакта и молекулярного взаимодействия контактирующих материалов. Приведем некоторые примеры.

Рассмотренные закономерности теплосъема и формирования полимерного зерна в процессе суспензионной полимеризации в реакторе с ОК могут быть использованы при выборе конструкции и режимов работы ОК в реакторах различного объема.

другие свойства. Процессы адсорбции играют существенную роль не только в комплексе конечных физико-химических и физико-механических свойств полимерных материалов, но и в ходе формирования полимерного материала, при его переработке или синтезе в тех случаях, когда эти процессы протекают в присутствии твердых тел иной природы—наполнителей, пигментов, на поверхности металлов, стекла и др. Образование клеевых соединений, нанесение лакокрасочных покрытий и ряд других технологических процессов включают в себя как первую стадию адсорбцию полимеров на поверхности. Отсюда вытекает важная роль исследования процессов адсорбции полимеров на твердых поверхностях в большинстве технологических процессов.

Взаимодействие полимерных молекул с твердыми телами приводит к существенному изменению всего комплекса их свойств. Это связано о тем, что адсорбционное взаимодействие на границе раздела уменьшает молекулярную подвижность цепей и в ходе формирования полимерного материала, и при его эксплуатации, а это приводит к изменению структуры граничного слоя, изменению температур, при которых в граничных слоях происходят термодинамические и структурные переходы, и к ряду сопутствующих явлений [ 18—21 ]. Между тем структура граничного слоя и условия ее формирования прежде всего зависят от характера адсорбции и определяются прежде всего структурой собственно адсорбционного слоя. Таким образом, проблема межмолекулярных взаимодействий в наполненных и армированных системах — это также проблема адсорбции. Следует отметить еще один аспект данной проблемы — влияние адсорбции на процессы синтеза высокомолекулярных соединений, протекающие на границе раздела фаз с твердыми телами [1 ]. Адсорбция растущих полимерных цепей переменного молекулярного веса и изменяющегося молекулярно-весового распределения существенным образом изменяет кинетические условия реакции, а в случае получения трехмерных пространственных сеток влияет также на их структуру [22, 23]. Следовательно, адсорбционные явления играют важную роль не только в процессах переработки или эксплуатации полимерных материалов, но и при их синтезе.

Эффекты разрыхления упаковки в граничных слоях мы объясняем следующим образом. Возникновение адсорбционных связей с поверхностью в ходе формирования полимерного материала, способствуя дополнительному структурированию системы, заметно ограничивает подвижность полимерных цепей вблизи поверхности, что приводит к изменению условий протекания релаксационных процессов и замедлению установления равновесного состояния полимера вблизи поверхности, а следовательно, делает невозможным появление плотноупакованной структуры в таких условиях. Влияние условий протекания релаксационных процессов на плотность упаковки полимеров показано в работе [233].

Адсорбционное взаимодействие на границе раздела фаз полимер — твердое тело, сказываясь на условиях формирования полимерного материала, приводит к изменению надмолекулярных структур граничных слоев и всей полимерной фазы в наполненной системе. В работе В. А. Каргина и Т. И. Соголовой [256] показано, что введение в кристаллизующиеся полимеры твердых добавок позволяет регулировать размер и число сферолитов. Механизм действия добавок заключается в том, что на поверхности твердых частиц в результате адсорбции возникают упорядоченные области полимера, играющие роль центров кристаллизации. С другой стороны, Ю. М. Ма-линским [257, 258] установлено ингибирующее влияние твердой поверхности на кристаллизацию полимеров в пристенных слоях.

Изменение молекулярной подвижности имеет следующие основные следствия. Оно ведет к повышению температур переходов, прежде всего — температуры стеклования, к изменению условий кристаллизации и к изменению релаксационного поведения полимера в поверхностных слоях. В последнем случае это влияние проявляется двояким образом: в ходе формирования полимерного материала из расплава или раствора, при полимеризации и в ходе эксплуатации уже готового полимерного материала. Ограничение молекулярной подвижности в поверхностных слоях при формировании полимера приводит к торможению релаксационных процессов и возникновению неравновесного напряженного состояния по сравнению с состоянием полимера в отсутствие твердой поверхности. В результате в системе возникает неплотная молекулярная упаковка и наполненный полимер может иметь в среднем меньшую плотность в расчете на полимер, чем ненаполненный.

Специфические особенности адсорбции полимеров необходимо иметь в виду и при рассмотрении адгезии полимеров к твердым телам, в которой адсорбционные силы играют основную роль, Действительно, адгезионное взаимодействие на границе раздела полимер — твердое тело есть прежде всего адсорбционное взаимодействие между двумя телами. Адсорбция полимеров на поверхности твердого тела определяет особенности структуры граничного слоя, характер упаковки макромолекул в граничных слоях, а следовательно, подвижность цепей, их релаксационные и другие свойства. Адсорбция не только определяет конечные физико-химические и физико-механические свойства полимерных материалов, но и играет существенную роль в ходе формирования полимерного материала и при его переработке, когда эти процессы протекают в присутствии твердых тел иной природы — наполнителей, пигментов, на поверхности металлов, стекла и др. Первой стадией ряда технологических процессов — образования клеевых соединений, нанесения лакокрасочных покрытий — и является адсорбция полимеров на поверхности. Естественно поэтому, насколько важны исследования процессов адсорбции полимеров на твердых поверхностях.

Адсорбционное взаимодействие полимерных молекул с твердыми телами на границе раздела уменьшает подвижность цепей и в процессе формирования полимерного материала, и при его эксплуатации, что приводит к изменению структуры граничного слоя, изменению температур, при которых в граничных слоях происходят термодинамические и структурные переходы, и к ряду сопутствующих явлений.

фекты уменьшения плотности упаковки в присутствии наполнителя выражены в значительно большей степени для образцов, полученных отливкой из растворов, чем получаемых прессованием. Это связано с тем, что в ходе формирования полимерного материала взаимодействие полимерных молекул или молекулярных агрегатов с поверхностью наполнителя изменяет условия протекания релаксационных процессов. Вследствие взаимодействия цепей с поверхностью происходит ограничение подвижности цепей и элементов надмолекулярных структур, что приводит к возникновению неплотно упакованной структуры. Совершенно очевидно, что в том случае, когда протекание релаксационных процессов в наполненном полимере облегчено, наполнитель будет оказывать меньшее действие на процессы структурообразования.

Процесс формирования надмолекулярных структур протекает по-разному в зависимости от расстояния до поверхности и связан с энергией когезии полимера. Влияние поверхности на формирование структур обусловливает возникновение неоднородностей в наполненной или армированной системе на. надмолекулярном уровне. Так как возникновение молекулярной структурной и химической неоднородности является следствием формирования полимерного материала в присутствии наполнителя, то механические свойства связующего в такой наполненной системе всегда хуже свойств связующего, отвержденного в отсутствие наполнителя. Ухудшение свойств полимерной фазы компенсируется ее взаимодействием с наполнителем и существованием структуры наполнителя, играющей важную роль в свойствах композиционного материала.

Кроме режимов формирования полимерного покрытия на внутренние напряжения большое влияние оказывает рецептура. Эффективным способом снижения внутренних напряжений является применение ' пластификаторов и модификаторов [80, 106, 107]. Например, внутренние напряжения в полиэфиракрила-тах можно снизить с 70 до 20 кгс/см2 [94], добавляя алкидную




Ферментов участвующих Фибриллярной структуры Фильтраты объединяют Факультетов университетов Фильтрату приливают Фильтрующая поверхность Фильтрующих материалов Фильтруют охлаждают Фильтруют тщательно

-
Яндекс.Метрика