Главная --> Справочник терминов


Физических состояниях Временная (частотная) зависимость механических свойств полимеров выражена столь значительно, что, смещаясь по шкале времени и частоты в широких пределах, можно в принципе получить при постоянной температуре все три рассмотренных выше физических состояния полимера.

Таким образом, аморфные полимеры (полимеры, в которых элементарные звенья распределены в цепи беспорядочно и не способны кристаллизоваться) могут пребывать в трех физических состояниях: твердом, или стеклообразном, высокоэластическом и вязкотекучем. Следует сказать, что высокоэластическое состояние характерно только для высокополимеров.

При нагревании или охлаждении один и тот же полимер может переходить из одного физического состояния в другое. Например, полиизобутилен при комнатной температуре находится в высокоэластическом состоянии, но при нагревании может быть переведен в вязкотекучее, а при охлаждени?! — в стеклообразное. Все три физических состояния аморфных полимеров необходимо строго отличать от фазовых состояний — кристаллического и жидкого. В зависимости от температуры и условий механического воздействия аморфный полимер всегда пребывает в одном из физических состояний и способен переходить из одного состояния в другое без скачкообразных изменений термодинамических свойств. Следовательно, во всех физических состояниях аморфного полимера его фазовое состояние будет одним и тем же, т. е. он является жидкой фазой.

тельно, и механических свойств (например, модуля упругости) от частоты действия силы гораздо более слабая. Для построения полной термомеханической кривой, охватывающей все три физических состояния, изменение времени действия силы должно составлять много десятичных порядков. Часто такой эксперимент невозможно практически осуществить. Применяют принцип температурно-временной аналогии, основы которого заложены в работах советских ученых А. П. Александрова и Ю. С. Лазуркина.

Три физических состояния каучуков. 82

Каучуки, как аморфные полимеры, в зависимости от температуры могут находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Высокоэластическое состояние является наиболее характерным для каучуков; в этом состоянии они обладают одним из наиболее важных физических свойств — эластичностью, т. е. способностью обратимо деформироваться в значительных пределах под действием сравнительно небольших усилий. Так, максимальная величина обратимой деформации растяжения каучука лежит в пределах 500— 1000% , в то время как у типичных твердых тел упругое (обратимое) удлинение редко превышает 1%. Способность каучуков к большим обратимым деформациям называется высокоэластич-н остью.

Три физических состояния каучуков

Эти три физических состояния возможны как у кристаллизующихся, так и у некристиллазующихся полимеров. При температуре ниже и выше температуры стеклования поли-находится в одном и том же фазовом состоянии — аморфном.

Все три физических состояния высокомолекулярных линейных аморфных полимеров можно наблюдать, снимая термомеханическую кривую, показывающую деформации от температуры (рис. II. 5). Каждое физическое состояние имеет свою природу и особенности.

Эти три физических состояния возможны как у кристаллизующихся, так и у некристаллизующихся полимеров.

Эти три физических состояния возможны как у кристаллизующихся, так и у некристаллизующихся полимеров.

109. В каких фазовых и физических состояниях существует целлюлоза? Влияют ли химическое строение, молекулярная масса и конфигурация макромолекул на зависимость свойство -температура?

один и тот же полимер может находиться в трех различных физических состояниях: стеклообразном (включающем подсостояния хрупкости и вынужденной эластичности), высокоэластичпом и вязкотекучем.

Таким образом, аморфные полимеры (полимеры, в которых элементарные звенья распределены в цепи беспорядочно и не способны кристаллизоваться) могут пребывать в трех физических состояниях: твердом, или стеклообразном, высокоэластическом и вязкотекучем. Следует сказать, что высокоэластическое состояние характерно только для высокополимеров.

При нагревании или охлаждении один и тот же полимер может переходить из одного физического состояния в другое. Например, полиизобутилен при комнатной температуре находится в высокоэластическом состоянии, но при нагревании может быть переведен в вязкотекучее, а при охлаждени?! — в стеклообразное. Все три физических состояния аморфных полимеров необходимо строго отличать от фазовых состояний — кристаллического и жидкого. В зависимости от температуры и условий механического воздействия аморфный полимер всегда пребывает в одном из физических состояний и способен переходить из одного состояния в другое без скачкообразных изменений термодинамических свойств. Следовательно, во всех физических состояниях аморфного полимера его фазовое состояние будет одним и тем же, т. е. он является жидкой фазой.

Из предыдущего материала становятся вполне понятны причины, по которым полимеры могут находиться в четырех основных физических состояниях — кристаллическом и трех некристаллических, к которым относятся стеклообразное, высокоэластическое и вязкотекучее. При этом следует помнить, что так называемые кристаллические полимеры в действительности кри-сталло-аморфны, т. е. никогда полностью не закристаллизованы и содержат часть некристаллической фазы.

Классификация физических состояний ф Особенности поведения полимеров в разных физических состояниях

роткими валентными химическими связями. Эти химические связи по механизму своего образования (обобществления электронов разных атомов в результате перекрытия при их сближении электронных облаков) являются ковалентными. Между макромолекулами полимеров существуют физические связи, длина которых примерно в 3 раза (около 0,4 нм) больше, а энергия их диссоциации в 5—10 раз меньше, чем у химических связей. Цепные макромолекулы полимеров могут отличаться как по химическому составу, так и по регулярности строения (расположению в пространстве звеньев и ответвлений цепей). Процессы упорядочения макромолекул (структурообразова-ния) приводят к появлению надмолекулярной организации не только у кристаллических, но и у аморфных полимеров. Последние не имеют кристаллических решеток и поэтому получили название некристаллических полимеров. Для них характерно отсутствие дальнего и наличие ближнего порядка и существование структурных элементов в виде доменов, имеющих чаще всего флуктуационную природу. Полимеры могут находиться в твердом и жидком агрегатных состояниях (газообразное состояние для них не характерно), кристаллическом и аморфном фазовых состояниях, а также в стеклообразном, высокоэластическом и вязкотекучем релаксационных (или деформационных) физических состояниях. Последние разделены температурами стеклования и текучести и характеризуются определенной шириной интервала высокоэластичности.

Высокоэластические свойства в расплаве определяются не только подвижностью отдельных макромолекул, но и подвижностью высокоупор-ядоченных вторичных образований. Таким образом, для некристаллических полимеров надмолекулярные структуры существуют во всех физических состояниях (стеклообразном, высокоэластическом и вязкотекучем). Процесс образования надмолекулярных структур носит многоступенчатый характер. Монокристаллы полимеров со-

Классификация физических состояний ф Особенности поведения полимеров в разных физических состояниях

Полимеры могут находиться в четырех физических состояниях— одном кристаллическом и трех некристаллических: стеклообразном, высокоэластическом и вязкотекучем. При этом следует иметь в виду, что так называемые частично-кристаллические полимеры никогда полностью не закристаллизованы и содержат значительную часть некристаллической фазы. Полимеры, находящиеся в стеклообразном или кристаллическом состоянии, вследствие их относительно высокой твердости обычно называют твердыми.

На рис. 1.15 приведены три типа термомеханических кривых. Кривые получены при нагревании с заданной скоростью нагруженного образца полимера. Действующая нагрузка должна быть неизменной (напряжение а = const) и малой по значению, чтобы механические воздействия на полимер не приводили к изменению его структуры. Обычно термомеханические кривые получают при деформации одноосного сжатия, растяжения или сдвига. При низких температурах все полимеры деформируются так же, как и твердые тела. Если полимер не кристаллизуется, то деформация с температурой изменяется по кривой типа 1. Выше температуры стеклования Тс проявляется высокоэластическая деформация (плато высокоэластичности), а затем выше температуры текучести Гт реализуется вязкое течение с накоплением необратимой деформации. Кривая / свидетельствует о том, что полимер может находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Каждому состоянию соответствует свой тип деформации.




Фунгицидным действием Функциональные заместители Функциональными заместителями Функционально ориентированного Фурановые соединения Фуроксаиовых соединений Фенольных гидроксильных Фактическое содержание Фенольного гидроксила

-
Яндекс.Метрика