Главная --> Справочник терминов


Физического воздействия 1. Исследование физического состояния:

При нагревании или охлаждении один и тот же полимер может переходить из одного физического состояния в другое. Например, полиизобутилен при комнатной температуре находится в высокоэластическом состоянии, но при нагревании может быть переведен в вязкотекучее, а при охлаждени?! — в стеклообразное. Все три физических состояния аморфных полимеров необходимо строго отличать от фазовых состояний — кристаллического и жидкого. В зависимости от температуры и условий механического воздействия аморфный полимер всегда пребывает в одном из физических состояний и способен переходить из одного состояния в другое без скачкообразных изменений термодинамических свойств. Следовательно, во всех физических состояниях аморфного полимера его фазовое состояние будет одним и тем же, т. е. он является жидкой фазой.

При динамических измерениях по зависимостям IgG', lgG" = = /((u) можно установить область перехода полимеров из одного деформационного физического состояния в другое (рис. 6.4). Особенно отчетливо это проявляется, когда М = 20 Ме. Если M = Met. то плато высокоэластичности на зависимости lgG' = /(co) практически не проявляется. Переход в высокоэластическое состояние всегда реализуется при напряжениях Р=105-;-106 Па. Кривые 1, 2К 3 на рис. 6.4 и 6.5 соответствуют различным значениям нормированных молекулярных масс М/Ме. Установившееся течение разных полимеров при сдвиговых напряжениях реализуется при Р = = 105-М06 Па.

С двойным лучепреломлением полимеров связано возникновение явления фотоупругости (в механическом поле), эффекта Керра (в электрическом поле) и эффекта Коттона—Мутона (в магнитном поле). Фотоупругость полимеров зависит от их фазового и физического состояния. Метод фотоупругости используется для изучения характера распределения внутренних напряжений в полимерах без их разрушения [9.4]. Изучая эффект Керра в полимерах, можно оценить эффективную жесткость полярных макромолекул, мерой которой служит корреляция ориентации электрических диполей вдоль цепей [9.5]. Наблюдение эффекта Коттона — Мутона (проявление дихроизма в магнитном поле), обусловленного диамагнитной восприимчивостью и анизотропией тензора оптической поляризуемости, позволяет оценивать значения коэффициентов вращательного трения макромолекул полимеров. Все эти методы исследования оптических свойств полимеров получили широкое распространение и, так же как и спектроскопические методы, в достаточной МРПЛ описаны в литературе [9.6; 50].

их молекулярного строения и надмолекулярных структур с учетом влияния температуры, давления, скорости скольжения и площади фактического контакта. Существенно на процессы трения и износа полимеров сказывается вид их физического состояния. Это объясняется тем, что процессы образования площади фактического контакта и механизмы трения и износа полимеров, находящихся в стеклообразном (пластмассы) и высокоэластическом (эластомеры) состояниях, существенно различаются [13.1—13.7].

обычно устанавливается значительно медленнее, чем в растворах низкомолекулярных веществ (иногда в течение недель и месяцев). Скорость установления равновесия определяется скоростью взаимной диффузии и сильно зависит от природы полимера и растворителя, молекулярной массы и концентрации полимера, а также от его исходного физического состояния и исходной степени дисперсности полимерных частиц.

Полимеры могут существовать в двух фазовых состояниях — аморфном и кристаллическом. В свою очередь, аморфные полимеры могут существовать в трех физических состояниях — стеклообразном, высокоэластическом и вязкотекучем. С каждым из этих состояний связан определенный комплекс механических свойств. Полимеры переходят из одного физического состояния в другое при изменении температуры.

Цель работы. Получение термомеханических кривых полимеров, определение температур переходов из одного фазового или физического состояния в другое.

Задание. Проанализировать характер полученной термомеханической кривой; определить температуры переходов из одного фазового или физического состояния в другое.

Задание. Проанализировать характер кривой зависимости модуля кручения от температуры при заданном моменте инерции системы; определить температурные области переходов полимеров из одного физического состояния в другое; проанализировать полученную зависимость тангенса угла механических потерь от температуры при заданном моменте инерции системы; объяснить смещение температур стеклования полимеров при изменении момента инерции системы.

'По своим электрическим свойствам полимеры являются типичными диэлектриками. Их поведение в электрическом поле определяется такими характеристиками, как удельное электрическое сопротивление (объемное и поверхностное), электрическая прочность, диэлектрическая проницаемость и диэлектрические потери. Электрические свойства полимеров зависят от химического строения и физического состояния полимеров, от условий их испытаний и эксплуатации, в частности-, от частоты и амплитуды напряженности внешнего поля, температуры, влажности среды, конструкции электродов и геометрических размеров испытуемого образца. Испытания электрических свойств полимеров необходимо не только для оценки их эксплуатационных качеств, но и для исследования их химического строения и структуры.

Молекулярная природа обоих процессов стеклования едина и заключается в потере кинетическими единицами вещества подвижности при относительно низких температурах или высоких частотах. Различие между обоими видами стеклования вытекает из отличия характера физического воздействия на материал (в одном случае охлаждение, а в другом — периодическая нагрузка) . С понижением температуры время т, в течение которого происходит элементарная молекулярная перегруппировка, возрастает настолько, что становится больше периода колебания внешней силы (происходит механическое стеклование) или больше времени наблюдения (происходит структурное стеклование).

С увеличением интенсивности физического воздействия на полимер возрастает скорость образования свободных радикалов и увеличивается возможность их рекомбинации. При этом, по-видимому, возможность протекания реакций, приводящих к структурным изменениям полимера, также увеличивается.

либо физического воздействия (тепловой, механической или световой энергии, а также ионизирующего излучения). Этот метод более подробно рассмотрен в главе III,

радикалы М. Свободные радикалы, представляющие собой частицы с неспаренным электроном, могут образовываться из молекул под влиянием физического воздействия — теплоты, света, проникающей радиации, когда в них накапливается энергия, достаточная для разрыва двойной связи. В зависимости от вида физического воздействия на мономер при инициировании (образова-

либо физического воздействия (тепловой, механической или световой энергии, а также ионизирующего излучения). Этот метод более подробно рассмотрен в главе III.

либо физического воздействия (тепловой, механической или световой энергии, а также ионизирующего излучения). Этот метод более подробно рассмотрен в главе III.

Деструкция под влиянием физических воздействий. Стойкость полимеров к различным видам физического воздействия зависит не только от прочности валентных связей цепей, но и от природы функциональных групп и заместителей в макромолекуле. Как правило, введение заместителей снижает устойчивость полимера, но если все атомы водорода при углероде карбоцепных полимеров замещены, стойкость снова возрастает. При неполном замещении галогенами, группами ОН и т. д. и повышенных температурах легко отщепляются HHal, вода и др. Этот вид деструкции почти всегда сопровождается окислительными процессами за счет кислорода воздуха, нередко имеет место также образование сетчатых полимеров и т. д. Подбирая соответствующие условия, можно усилить или ослабить роль указанных вторичных процессов.

С ростом интенсивности физического воздействия на полимер увеличиваются скорость образования свободных радикалов и возможность разветвления и структурирования, обусловленная процессами рекомбинации.

Деструкция под влиянием физических воздействий. Стойкость полимеров к различным видам физического воздействия зависит не только от прочности валентных связей цепей, но и от природы функциональных групп и заместителей в макромолекуле. Как правило, введение заместителей снижает устойчивость полимера, но если все атомы водорода при углероде карбоцепных полимеров замещены, стойкость снова возрастает. При неполном замещении галогенами, группами ОН и т. д. и повышенных температурах легко отщепляются HHal, вода и др. Этот вид деструкции почти всегда сопровождается окислительными процессами за счет кислорода воздуха, нередко имеет место также образование сетчатых полимеров и т. д. Подбирая соответствующие условия, можно усилить или ослабить роль указанных вторичных процессов.

С ростом интенсивности физического воздействия на полимер увеличиваются скорость образования свободных радикалов и возможность разветвления и структурирования, обусловленная процессами рекомбинации.

Наконец, у полимеров могут осуществляться реакции, которые неизвестны в низкомолекулярной химии. Это, например, разрыв длинных макромолекул на более короткие (деструкция цепи) или образование сетки из многих макромолекул, сшитых в разных местах с помощью какого-либо химического вещества или физического воздействия (пространственно-сшитые полимеры).




Фенольные гидроксилы Фурановых производных Фуроксановых соединений Фенольных производных Фенольными гидроксилами Фенольному гидроксилу Ферментативной активности Ферментные препараты Ферментов участвующих

-
Яндекс.Метрика