Главная --> Справочник терминов


Хаотически перепутанных Теплопроводность сетчатых полимеров в стеклообразном состоянии при возрастании температуры до Гс увеличивается. При переходе в высокоэластическое состояние (Г > Тс) динамика функции А, = ф(Г) зависит от топологической организации пространственной сетки. У густосетчатых полимеров в высокоэластичном состоянии коэффициент теплопроводности либо увеличивается, либо остается квазипостоянным, у сетчатых с Мс > 2000 значение X, в этом физическом состоянии может уменьшаться.

Морозостойкость определяет способность находящегося под нагрузкой полимерного материала сохранять свои термодеформационные свойства при низких температурах. Ниже температуры морозостойкости пластмасса становится хрупкой и растрескивается. Поэтому морозостойкость понимают также как отсутствие хрупкости и характеризуют температурой хрупкости Гхр. Этот параметр зависит от свойств полимерного материала (табл. 39). Для резин и других эластомеров хрупкость наступает при Т > Гс. Большинство густосетчатых полимеров склонны к упругому разрушению в стеклообразном состоянии, которое они сохраняют при охлаждении до температуры около -60 °С (Тхр = -30 ... -60 °С). Термопласты могут выдерживать без хрупкого разрушения температуры от -10 °С до -200 °С.

По второму методу трудность определения пс (особенно для густосетчатых полимеров) связана с необходимостью нахождения величины фронт-фактора F в уравнении кинетической теории высокоэластичности (подробно см. главу 7)

где G — равновесный модуль упругости сетчатого полимера при сдвиге в высокоэластическом состоянии. Другое принципиальное осложнение может возникать из-за наличия в высокоэластическом состоянии для полярных густосетчатых полимеров не только химических узлов сетки, с концентрацией которых собственно и связан равновесный модуль упругости, но и физиче-

ских узлов [164—166]. При такой ситуации зависимость модуля упругости от температуры будет существенно нелинейна и станет линейной при исчезновении физических узлов, начиная с некоторой температуры. Очевидно,. что уравнение может быть использовано лишь выше этой температуры. Другой возможный и обычно используемый вариант ликвидации физических узлов — это предварительное набухание полимера в соответствующих растворителях. Само определение равновесного модуля упругости, строго говоря, должно производиться при различных скоростях деформирования (ё) и последующей экстраполяции полученных значений на нулевую скорость, деформирования (е ->- 0). Все используемые на практике методы определения равновесного модуля упругости являются более или менее подходящими приближениями, и необходимо с большой осторожностью применять имеющиеся в литературе данные (особенно для густосетчатых полимеров) о величинах равновесных модулей упругости и соответственно рассчитанных из них значений пе, каждый раз тщательно анализируя использованные экспериментальные условия и методы.

Морфология редкосшитых полимеров мало отличается от таковой для линейных полимеров [152—162]. В редкосшитых сетчатых полимерах могут быть реализованы все морфологические структуры (глобулы, сферолиты, кристаллиты, фибриллы и т. п.), характерные для линейных полимеров. Однако по мере увеличения концентрации узлов сетки наблюдаются прогрессирующие затруднения для образования хорошо упакованных морфологических структур с высокой степенью упорядоченности межузловых цепей, так что в конечном счете для густосетчатых полимеров (концентрация узлов сетки ~1021 узлов/см3) подобные структуры вырождаются вовсе и фундаментальным структурным элементом для густосетчатых полимеров являются исключительно глобулы [152, 153, 162—165]. Все попытки изменения характера морфологической структуры таких полимеров за счет широкого-варьирования химического строения исходных реагентов — олигомеров и отверждающих агентов, за счет изменения условий образования полимера или воздействия на уже сформированный полимер тепловых и механических полей не приводят к изменению морфологии густосетчатого полимера: во-всех случаях она остается глобулярной, варьируют в некоторой степени лишь размеры глобул.

К сожалению, в настоящее время неизвестны более детальные сведения о влиянии характера топологической организации сетчатого полимера (нетолько брутто-количества узлов, но и характера их распределения, количества циклов различного размера и строения и т. п.) на морфологические особенности сетчатых полимеров. Такие работы на сегодняшний день отсутст-вуют, однако подобная информация была бы весьма полезна, так как, с одной стороны, она дала бы возможность найти более тесную связь между топологической и надмолекулярной структурой сетчатого полимера, с другой — на стадии синтеза полимера более целенаправленно управлять ими. Из рассмотренного выше материала очевидно, что подобные исследования представляют интерес в первую очередь для сетчатых полимеров с низкой концентрацией узлов сетки, в которых могут реализоваться различные морфологические структуры. С повышением концентрации узлов сетки полимеров возможность регулирования их морфологии отходит на задний план;, для густосетчатых полимеров эта задача оказывается уже в принципе невыполнимой, так как для последних характерна лишь единственная надмолекулярная организация — глобулярная.

Таким образом, эффект аномальной зависимости динамического модуля упругости от концентрации узлов сетки для густосетчатых полимеров в стеклообразном состоянии следует связывать именно с ослаблением межмолекулярного взаимодействия цепей при увеличении концентрации узлов сетки выше некоторого предела, характерного для каждого класса сетчатых полимеров. Очевидно, этот предел будет тем ниже, чем более прочные связи образуются при межмолекулярном взаимодействии.

лишь после значительной вытяжки цепей [81], что для длинных цепей, естественно, осуществляется лишь при значительно больших деформациях. Подробное обсуждение механизма вынужденно-эластических деформаций для густосетчатых полимеров дано в следующем разделе настоящей главы. При повышенных температурах, близких к температуре стеклования, оказывается возможным четко выявить эффект ориентации цепей в ходе вынужденно-эластического деформирования, который проявляется в образовании шейки в деформируемом образце, явно выраженном плато на^ диаграмме а — е и последующем увеличении напряжения при дальнейшем деформировании. При низких температурах этот эффект маскируется интенсивным разрушением большого количества перенапряженных цепей и как следствие преждевременным разрывом полимера, и наблюдается диаграмма типа о — е, приведенного на рис. 28. Незначительное сшивание жестких линейных полимеров, например таких, как полистирол, приводит к некоторому росту предела вынужденной эластичности, однако высокая концентрация узлов сетки вызывает сильное падение прочности при растяжении, и полимер становится очень хрупким. Так, прочность при растяжении сополимера стирола с 4% дивинилбензола повышается до 525 кгс!см по сравнению с 475 кгс/см? для чистого полистирола и падает до 70 кгс/сж2 для сополимера стирола с 25% дивинилбензола [113]. Резкий рост прочностных свойств, равно как и статического модуля упругости и предельной деформации при разрыве, наблюдается при образовании сетчатого полимера в процессе поликонденсации после точки гелеобразования, однако еще задолго до окончания процесса (85—90%) рост этих свойств прекращается [76, 118]

Приведем еще несколько различных видов эксперимента, из которых можно почерпнуть информацию о влиянии топологической организации и, в частности, концентрации узлов сетки на прочностные и деформационные свойства сетчатых полимеров в стеклообразном состоянии. Все эти данные будут приведены главным образом для достаточно густосетчатых полимеров (пс — 1021узлов/см3).

Таким образом, можно сделать вывод, что физико-механические свойства густосетчатых полимеров в стеклообразном состоянии в конечном счете определяются молекулярным уровнем их структурной организации. Это, очевидно, является весьма счастливым обстоятельством. Во-первых, потому, что с практической точки зрения особый интерес представляет нахождение количественной корреляции физико-механических сюйств полимера именно с молекулярной структурой, поскольку это открывает перспективы прогнозирования для выбора мономеров такого строения, полимеры которых характеризовались бы необходимыми физико-механическими свойствами. Во-вторых, в настоящее время уже имеются некоторые представления, позволяющие на основе полуэмпирических методов еще до синтеза с вполне достаточной для практических целей точностью на основе лишь данных о химическом строении предполагаемого полимера прогнозировать ряд его свойств.

Ранее полимеры рассматривались как тела, Составленные из хаотически перепутанных цепных макромолекул. В дальнейшем эти представления были развиты в теорию «бахромчатых мицелл». Полимеры представляют собой систему, состоящую из кристаллических и аморфных областей, образующих одну сложную фазу.

Гетерогенность структуры доменного типа может наблюдаться методом малоуглового рассеяния рентгеновских лучей в случае растяжения аморфных образцов полистирола и полиметилметакрила-та при температуре ниже Тс. Обнаруживаемая методами дифракции рентгеновских лучей в больших и малых углах гетерогенность структуры расплава полиэтилена — результат проявления специфики полимерного состояния вещества, заключающейся в возможности расположения одной и той же длинной макромолекулы в нескольких упорядоченных областях, что приводит к сохранению чередования в расплаве областей повышенной и пониженной плотности, аналогично тому, как это наблюдается для частично-кристаллического полимера. Все эти данные не согласуются с моделью гомогенного полимера в виде совокупности хаотически перепутанных цепей. Сегменты и цепи группируются в областях упорядочения, больших областей флуктуации плотности. А так как эти области увеличиваются с возрастанием молекулярной массы полимера, можно сделать вывод, что истинное распределение сегментов содержит своеобразные ядра (домены) .с повышенной плотностью. Остальные сегменты полимерной системы находятся вне этих доменов.

их в единую пространственную сетку (модель сетки зацеплений). Появление концепции сеток, образованных физическими узлами, вызвано тем, что модель хаотически перепутанных цепей не описывает принципиально процессов, которые связаны с существованием больших времен релаксации, причем характер этих процессов не зависит от структуры звеньев макромолекулы и подвижности свободных сегментов. Зацепления следует рассматривать как специфические локальные межмолекулярные взаимодействия (физические узлы), оказывающие влияние на крупномасштабные движения цепей и, следовательно, на длинновременную часть релаксационного спектра. Время жизни этих узлов значительно больше, чем время сегментальной подвижности.

Эдварде [4.13] в своей работе также подчеркивает, что классическая теория исходит из того, что цепи сетки не взаимодействуют между собой. Автор рассматривает другой крайний случай сеток по сравнению с моделью хаотически перепутанных, но не взаимодействующих цепей (классическая теория). Сильно перепутанная система цепей приводит к негауссовой статистике. Для энтропии

Линейные размеры всех типов структурных микроблоков значительно меньше, чем контурная длина макромолекул, поэтому одна и та же макромолекула многократно проходит' через различные микроблоки. Между физическими узлами — микроблоками — имеются цепи сетки, которые являются частью макромолекулы. Если учесть, что микроблоки не являются стабильными образованиями и время их жизни уменьшается при повышении температуры, то за время наблюдения эти флуктуационные структуры могут многократно распадаться в одних местах и возникать в других, т. е. «размазываться» по объему полимера. Следовательно, модель упорядоченных областей (структурных микроблоков) является динамической, а для равновесных процессов она переходит в модель хаотически перепутанных цепей. Таким образом, модель сетки полимера, образованной физическими узлами в виде структурных микроблоков, не противоречит статистической теории высокой эластичности. В соответствии с этой моделью быстрая высокоэластическая деформация в эластомерах определяется подвижностью свободных сегментов и изменением конфигураций свободных цепей (между физическими узлами). Медленные физические релаксационные процессы и вязкое течение определяются временами жизни физических узлов сетки эластомера, кинетическая стабильность которых определяется методами релаксационной спектрометрии.

Менее определенные формы надмолекулярной организации наблюдаются у полимеров с невысоким уровнем межмолекулярного взаимодействия, имеющих макромолекулы в конформащш статистического клубка. Длительное время считачи, что в конденсированном состоянии такие полимеры представляют собой конгломераты хаотически перепутанных клубков, образующих так называемый «молекулярный войлок». Однако такое представление не соответствует свойствам полимеров.

В настоящее время считают, что для структуры аморфных полимеров с гибкими макромолекулами, обладающими сегментальной подвижностью, характерно существование неупорядоченных областей из хаотически перепутанных макромолекул и упорядоченных микрообластей -

Полосатые структуры. Уже первые данные, полученные методом электронной микроскопии, показали ошибочность широко распространенного до последних лет представления об аморфных полимерах как о системе хаотически перепутанных цепных молекул («аморфный войлок»). Такое представление не согласуется со многими экспериментальными данными Даже у низкомолеку-

Полосатые структуры. Уже первые данные, полученные методом электронной микроскопии, показали ошибочность широко распространенного до последних лет представления об аморфных полимерах как о системе хаотически перепутанных цепных молекул («аморфный войлок»). Такое представление не согласуется со многими экспериментальными данными Даже у низкомолеку-

Однако последующие исследования показали, что эластомеры нельзя рассматривать как бесструктурный войлок перепутанных цепей [б; 46] . Прежде всего оказалось, что плотность упаковки макромолекул каучуко-подобных полимеров значительно выше, чем можно было ожидать для системы хаотически перепутанных цепей. Робертсон [47] рассчитал, что для последнего случая отношение плотности одного и того же полимера в аморфном и кристаллическом состояниях рам/ркр—

Длительное время считалось, что аморфные полимеры представляют собой конгломерат хаотически перепутанных молекул. В связи с этим возникло представление о так называемом «молекулярном войлоке», который, как предполагалось, соответствует структуре аморфного полимера. По образному выражению известного американ-

На основании экспериментальных данных, полученных в последнее время различными авторами, было сделано предположение о том, что существующие представления о структуре аморфных полимеров в виде хаотически перепутанных, изогнутых цепей не соответствуют реальной структуре аморфных полимеров. Каргин, Китайгородский и Слонимский [1] считают, что молекулярное расположение цепей в аморфных полимерах может быть построено, как правило, либо из развернутых цепей, собранных в пачки, либо из свернутых на себя глобул. Особенности физических и механических свойств аморфных полимеров могут быть легко объяснены исходя из такой модели.




Гидрирование происходит Гидрирование соединения Гидрировании превращается Гидрированных производных

-
Яндекс.Метрика