Главная --> Справочник терминов


Гидрирование ароматических Процесс выделения изопрена из смесей, образующихся при двухстадийном дегидрировании изопентана, состоит из следующих стадий: экстрактивная-ректификация; ректификация изопрена от пиперилена; химическая очистка изопрена от циклопентадиена; отмывка от карбонильных и аминосоединений; гидрирование ацетиленовых углеводородов в изопрене.

Отмытый изопрен в отстойнике 16 отделяется от воды. Верхний слой — изопрен насосом 17 через холодильник 18, где охлаждается до 10—30 °С, подается на гидрирование ацетиленовых соединений в реактор 19. Ацетиленовые соединения, в основном бутилацетилен и изопропилацетилен, гидрируются в амилены:

Следовательно, даже если отношение k^lk^ будет велико (что предпочтительнее), отношение наблюдаемых скоростей может быть значительно меньше, поскольку оно зависит от корня квадратного из k^lk^. Поскольку, однако, гидрирование диенов идет на гладких поверхностях с большими константами скоростей, чем гидрирование ацетиленовых углеводородов, то при осуществлении этих конкурирующих реакций на пористом катализаторе более быстрая реакция (с kj) будет замедляться диффузией в узких порах сильнее (в У k-i раз), чем более медленная реакция (с &2); т- е. при переходе от внутрикинетической во внутридиффузионную область селективность катализатора в отношении конкурентного гидрирования ацетиленовых соединений в присутствии диенов возрастает (тем сильнее, чем больше размер зерна катализатора и меньше его поры). Напротив, такой переход нежелателен для смеси этилен + ацетилен, так как на алюмопалладиевом широко пористом катализаторе именно ацетилен быстро и селективно гидрируется в этилен.

2) селективное гидрирование ацетиленовых соединений на никелевом катализаторе, нанесенном на кизельгур;

Процесс хемосорбции обратим и бутадиен — углеводород с высокой растворимостью — способен вытеснять из раствора менее растворимые бутилены. Содержащиеся в бутадиеновых фракциях ацетиленовые углеводороды в присутствии меди полимеризуютс'я и загрязняют медноаммиачный раствор, поэтому часть его непрерывно пропускают через угольные фильтры, где адсорбируются полимеры. Во избежание этого целесообразно осуществлять предварительное гидрирование ацетиленовых углеводородов в сырье, поступающем на разделение.

Селективное гидрирование ацетиленовых углеводородов 92, 93, 165, 166

Учитывая различия в физических свойствах цис-транс-изоые-ров, их смеси можно разделять, используя такие методы, как перегонка, кристаллизация, различные виды хроматографии. Эти операции ничем не отличаются от обычных операций по разделению смесей органических веществ, потому рассматривать подробнее их нет необходимости. Большего внимания заслуживают реакции образования двойной связи, в которых предпочтительно образуется определенный стереоизомер. Этими реакциями являются прежде всего гидрирование ацетиленовых углеводородов, реакции отщепления с образованием двойной связи.

Гидрирование ацетиленовых соединений в мягких условиях на различных никелевых катализаторах с контролем за количеством поглощенного водорода позволяет получать i/нс-алкены с выходами 50-100%. Например, ^мс-гексен-3 был получен из диэтилаце-тилена с выходами не менее 80 % на нескольких никелевых катализаторах типа Р и Nic:

Каталитическое гидрирование ацетиленовых у-гликолей с цикло-лентиловым радикалом было проведено Ю. Залькиндом и Т. Гвердци-тели [Ж. О. X. 9, 855 (1939)]. Электролитическое восстановление диметилвинилацетиленилкарбинола проводилось А. Фаворским и А. Головчанской [Бюлл. Всесоюзн. хим. об-ва им. Менделеева 1939, 6, 2].

Селективное каталитическое гидрирование ацетиленовых углеводородов. Способ базируется на большом .различии скоростей гидрирования углеводородов разной степени непредельности при применении селективных катализаторов; главным образом это катализаторы на основе палладия и никеля, нанесенные на оксид алюминия или другие носители. С их помощью удается снизить массовое содержание ацетиленовых соединений от 0,1—0,6 до 0,01—0,02%. При этом гидрируется 1—2, иногда до 4—8% бутадиена. Очистка фракций С4 после дегидрирования н-бутиленов с массовым содержанием бутадиена до 30% и ацетиленовых соединений до 0,1% на катализаторе «никель на 'кизельгуре» осуществляется при 18 °С, давлении 0,5 МПа, объемной скорости фракции 10 ч~: и подаче водорода 20 моль на 1 моль ацетиленовых соединений (в пересчете на

Гидрирование ацетиленовых связей имеет препаративное значение лишь в iex случаях, когда имеют задачей получение производных этилена путем частичного восстановления ацетиленовых Производных. При восстановлении водородом в момент выделения •Йри отом получаются главным образом стабильные пространствен-j.Hbie и;юмеры этиленовых соединений, в то время как с каталитически возбужденным водородом часто удастся получить с хоро-'шими выходами более богатые энергией мет а стабильные изомеры. р Относительно существующих при этом уололий в последнее (время появились работы Отта и Шретера [65], в которых присоединение водорода к ацетиленовой связи, как и вообще к ненасыщенным связям, рассматривается не как стереохимическая, ,а как энергетическая проблема. При восстановлении каталитически возбужденным водородом в зависимости от активности .катализатора получаются меняющиеся количества обоих изоме-1 ров УТИЛОШШОГО соединения. Несмотря на дополнительные ослож-1 ионии, киторыо могут лозшпшуть иследс'ллш того, что часть обра-i зующихся этиленовых связой может прогидрироваться до при-1 дельных, выход более богатых энергией изомеров увеличивается , Со скоростью реакшш и с активностью применившегося катали-' Затора. Таким образом, по получаются в каждом случае непременно «ммс-формы», но образуются предпочтительно мопсе стабильные, оолео богатые энергией формы независимо от их пространственной конфигурации. Особенно активные катализаторы [никоим образем не могут считаться подходящими по всех случаях, 'ак как при этом, прежде чем будут восстановлены все ацстилспо-ге связи, может произойти дальнейшее гидрирование до произ-1ных этана. Это может привести при некоторых обстоятельствах помехам при обработке продуктов реакции, если, как в случае >ричных кислот, богатая энергией ^мс-коричная кислота обра-1ует с гидрокоричпой кислотой пизкоплавкую эвтектику, которая

Гидрирование ароматических углеводородов используется прежде всего при получении сырья для химической промышленности. Так, циклогексан является основным сырьем в производстве капролактама и адипиновой кислоты [44, 45], фенола [14, с. 270—281]:

Достоинством диспропорционирования является возможность в широких пределах менять соотношение получаемых продуктов — бензола и ксилола (от 0,8 : 1 до 1 : 10) — в связи с потребностями рынка. Невысокая гидрирующая активность катализатора и низкий расход водорода позволяют свести к минимуму гидрирование ароматических углеводородов, вследствие чего с помощью обычной ректификации можно выделить бензол очень высокой степени чистоты. Основной недостаток процесса — относительно низкая степень конверсии толуола за проход, что требует повышенного по сравнению с гидродеалкилированием рецикла непрореагировавшего сырья.

Гидрирование непредельных соединений с удовлетворительной полнотой протекает при более высокой объемной скорости — 1,5 ч-1 и более низкой температуре [54]. При понижении объемной скорости, необходимой для глубокого превращения тиофена, начинается гидрирование ароматических углеводородов — бензола -н-тояуола.

Значительный интерес представляют гидрогенизационные методы очистки, сочетающие гидрогенолиз сернистых и крекинг насыщенных углеводородов. Гидрокрекинг в широком диапазоне температур и давлений имеет более высокую энергию активации, чем гидрирование ароматических углеводородов (73,2 и 60,7 кДж/моль соответственно [60]), поэтому в таких условиях невозможна достаточно полная конверсия примесей без одновременного гидрирования ароматических углеводородов. Кинетика совместных превращений тиофена и насыщенных углеводородов изучалась на алю-момолибденовом катализаторе при давлениях 0,5—1,5 МПа [61]. Установлено, что гидрокрекинг насыщенных углеводородов протекает в более жестких условиях по сравнению с гидрогенолизом тиофена. При малом содержании нафтенов и парафинов в бензоле их заметная конверсия (rfe менее 50% от первоначального содержания) начинается при 480—510 °С и развивается с повышением температуры и снижением объемной скорости. В соответствии с более высокой энергией активации наиболее стоек к разложению н-гептан.

На промышленном алюмоплатиновом катализаторе АП-64 н-гептан практически полностью превращается за счет дегидроциклизации в толуол, однако при этом происходит и частичное гидрирование ароматических углеводородов и увеличение в гидрорафинате содержания циклогексана и метилциклогексана. Гидрирующая активность катализатора снижается промотированием его элементами IV и VII групп периодической системы (в количествах 0,3%). Проведение процесса на промотированных катализаторах в указанных ранее условиях позволяет получить гидрорафинат с относительно невысоким содержанием насыщенных углеводородов, из которого на колонне эффективностью 30 т. т. выделен 99,97%-ный бензол с содержанием отдельных примесей: 0,002—0,003% метилциклогексана; 0,003—0,005% циклогексана; 0,005% и-гексана и следы н-гептана. Выход такого бензола составил 85—89% от ресурсов бензола в гидрорафинате.

Гидрогенизация ненасыщенных углеводородов. 1 Д-Присоедине-ние. Гидрирование ацетиленов. Гидрирование ароматических углеводородов. Восстановление карбонильных соединений. Восстановление карбоновых кислот и их производных/Восстановление ароматических кигросоединений. Бензидиновая перегруппировка. Восстановление алифатических нитросоединений. Сопряженное окисление — восстановление. Реакция Тищенко. Восстанавливающие агенты: натрий, водород, цинк, амальгамы металлов, алкоголяты алюминия, алюминийгидриды, иодистоводородная кислота.

15-11. Гидрирование ароматических соединений. Гексагидро-триприсоединение

Исторически первым предложенным для этого методом была сухая перегонка с цинковой пылью, с помощью которой из ализарина впервые был получен антрацен. Более совершенный метод — нагревание соединения с концентрированной иодоводородной кислотой под давлением при 150—200°С. Однако при этом проходит и частичное гидрирование ароматических колец — получающиеся продукты нуждаются в последующем дегидрировании. Удобнее метод, при котором исходное соединение сплавляют с цинковой пылью и хлоридом цинка.

Жидкофазное гидрирование ароматических нитросоединений универсальнее парофазного, так как позволяет восстанавливать не только высококипящие нитросоединения, но и неплавкие и нелетучие, например нитроаренсульфокислоты. Кроме того, реакцию можно проводить в мягких температурных условиях, что благоприятно сказывается на выходе и качестве целевых продуктов.

Гидрирование ароматических соединений. Хотя для1 гидрирования ароматических систем требуются более жесткие условия чем для гидрирования по олефиновым С— С-связяи, трудности проведения таких процессов раньше-переоценивали. Во всяком случае, ароматические системы гидрируются после всех других ненасыщенных центров, за исключением гидроксильных и карбоксильных групп. Применяя современные катализаторы, например окисъ платит,!, реакцию гидрирования лтржно провести уже при комнатной температуре.

Из галоидов более легко замещается хлор, но вообще эта реакция проходит с трудом. Этот метод делает возможным гидрирование ароматических систем, что не удавалось осуществить до его открытия.




Глубокого окисления Гомогенные катализаторы Гомогенное гидрирование Горизонтальной плоскости Государственного нефтяного Газофазного окисления Градиенте концентрации Градуированной капельной Графически зависимость

-
Яндекс.Метрика