Главная --> Справочник терминов


Характеристик полимеров Важнейшей из характеристик полимерных сеток является число эластически активных цепей в единице объема полимера v. Эластически активной называют цепь линейного строения, заключенную между такими двумя соседними узлами сетки, от каждого из которых к поверхности образца исходят по меньшей мере три независимых ветви [7]. У вулканизованных каучуков обычно v = 10 — — 100 моль/м3. v является функцией либо общего числа сшивок, молекулярной массы и молекулярно-массового распределения исходных макромолекул, если сетка образуется путем вулканизации, либо степени завершенности реакции и функциональности мономеров, если сетка формируется в процессе полифункциональной поликонденсации.

Комплекс структурно-механических характеристик полимерных материалов зависит от физических состояний полимеров.

в какой момент какие условия воздействия становятся критическими для состояния, в котором находится материал. Ввиду того что из множества характеристик полимерных структур выбирается только их деформация, полностью решить эту задачу вряд ли возможно. Компетентное рассмотрение обеих задач, их взаимосвязи и зависимости от других областей науки о полимерах, вероятно, можно найти в энциклопедиях полимеров [1, 2] и частично в специальных учебниках по вязкоупру-гости [3, 4], механике [5] и физике [6—8] полимеров. Хотя в общем случае первая задача и не может быть решена, в литературе по разрушению (учебники [9—12]) широко и понятно объясняется это явление, которое сводится к процессам, вызывающим наиболее очевидные изменения морфологии образцов во время разрушения.

изменения не только механических, но и электроизоляционных характеристик полимерных пленок. Кристаллизацией пленки в ориен* тированном состоянии можно не только снизить диэлектрические-потери, но и повысить ее теплоемкость по сравнению с пленкой из аморфного полимера. С этой точки зрения весьма интересньь кристаллизующиеся поликарбонаты, температура стеклования которых может достигать 160—180 °С.

Определение температур физических переходов в полимерах возможно, например, с помощью термомеханического метода. Этот же метод может использоваться для быстрого определения таких важных характеристик полимерных материалов, как температуры стеклования, кристаллизации, начала химического разложения.

Другой подход, развиваемый длительное время автором данного предисловия совместно с Ю.И. Матвеевым [28, 128], является полуэмпирическим. Согласно этому подходу, уравнения для расчета физических свойств получены на основании представлений физики твердого тела, а калибровка метода осуществляется с помощью физических характеристик полимерных стандартов, свойства которых хорошо изучены. В результате параметры уравнений имеют определенный физический смысл (энергия дисперсионного взаимодействия, энергия сильного межмолекулярного взаимодействия, включая водородные связи, Ван-дер-Ваальсовый объем и т.д.). Использование такого подхода позволяет с достаточной точностью оценивать многие физические характеристики полимеров (сейчас их уже около 60), и при этом количество полимеров самого разнообразного строения не ограничено.

Новый вискозиметр Physica LCi предназначен [23] для изучения вязкостных характеристик полимерных материалов и записи семейства кривых течения в чрезвычайно широком диапазоне вязкости -от 0,001 до 3000 Па-с. Использование новейшей сенсорной техники позволяет исключить переналадку прибора при переходе от низковязких к высоковязким образцам. Вискозиметр имеет сменные рабочие узлы типа конус-плоскость и цилиндр-цилиндр, значения измеренной вязкости и температуры образца выводятся на монитор или печатающее устройство.

Устройство для исследования реологических характеристик полимерных материалов (СССР) состоит из червячной машины с двумя шнеками, зоны выдавливания которых соединены с зонами загрузки двумя полостями. В первой полости размещен ротор вискозиметра, во второй - плунжер. При работе устройства полимерная смесь непрерывно циркулирует от одного шнека к другому, и реологические характеристики можно измерять с помощью ротационного вискозиметра при заданной температуре. С помощью червячной машины можно производить впрыскивание смеси в воздух или испытательную форму, измеряя при этом давление впрыска и количество выдавливаемого материала.

Разработанный в нашей стране прибор "Вискоэл" предназначен [35] для одновременного и раздельного экспресс-контроля в динамическом режиме вязких и упругих характеристик полимерных материалов в диапазоне от 102 до 106 Па. Прибор состоит из двух блоков - измерительного и вибродатчика, представляющего собой двойную электродинамическую систему. Подвижные катушки систем соединены жестким штоком, к которому крепится зонд, вводимый в полимерный материал. Катушки, шток и зонд совершают синхронные движения в осевом направлении под действием синусоидального электрического напряжения, подводимого к силовой катушке. Так как в процессе измерений амплитуда колебаний зонда поддерживается постоянной, то величина напряжения, подводимого к силовой катушке, пропорциональна вязкоупругости материала. Поскольку амплитуда колебаний зонда мала (25 мкм), в процессе измерения

30. Метод определения толщины, степени вулканизации и других характеристик полимерных покрытий и пленок. Патент 5606171 США, МКп G01N21/64. Опубл. 25.02.97.

Пластификация - это введение в полимер совмещающихся с ним низкомолекулярных нелетучих веществ с целью улучшения технологических и эксплуатационных характеристик полимерных материалов. В зависимости от химической природы и физической структуры полимера, а также от природы пластификатора и его концентрации, введение пластификатора в полимер может снижать либо Гс, либо Гт, либо одновременно обе температуры перехода. При этом у гибкоцепных полимеров происходит уменьшение интервала высокоэластического состояния при увеличении количества пластификатора, вплоть до полного исчезновения интервала ГС...ГТ (растворение полимера в пластификаторе). У жесткоцепных полимеров, наоборот, при введении пластификатора температурная область высокоэластического состояния расширяется.

Присутствие даже ничтожных количеств пыли в растворителе вносит очень большую ошибку в результаты измерения молекулярных характеристик полимеров. Данные о мутности ряда растворителей приводятся в Приложении 7.

В последние годы появился ряд исчерпывающих обзорных статей по механохимии полимеров [221—226]. Очень полезен в этом отношении компетентный двухтомный справочник Портера и Казале [227]. Читатель может обратиться к работам [222—227] за любой дополнительной информацией относительно влияния экспериментальных параметров (типа оборудования, температуры, скорости механической обработки, окружающей среды) или характеристик полимеров (химическое строение, начальная молекулярная масса) на конечные свойства материала '>.

До сих пор мы рассматривали только сдвиговые течения, обращая особое внимание на установившиеся вискозиметрические течения [40, 44—46]. Причиной этого является простота теоретического рассмотрения этих течений и их превалирующее распространение в технологии переработки полимеров. Тем не менее существует другой класс течений, известных как «продольные течения», или «течения при растяжении», которые также часто встречаются при переработке полимеров. В качестве примера можно привести фильерную вытяжку струи расплава при формовании волокна, одноосную вытяжку плоской струи при получении пленки из плоскощелевой головки экструзионным методом, двухосное растяжение при формовании пленки рукавным методом, многоосное растяжение при формовании изделий методом раздува и, наконец, сходящееся течение в конических каналах уменьшающегося диаметра. Во всех этих примерах упоминаются продольные течения, которые гораздо сложнее течений, используемых для определения реологических характеристик полимеров. В то время как реологи изучают однородные изотермические продольные течения (которые достаточно трудно правильно реализовать в эксперименте), инженерам-переработчикам приходится иметь дело с неоднородными и неизотермическими продольными течениями, поскольку такие течения часто встречаются при формовании на стадии отверждения,

Временные зависимости деформационно-прочностных характеристик полимеров детально были изучены Буссе и Лессингом на хлопковых волокнах и Голландом и Тернером на силикатных стеклах*. Систематическое изучение временной и температурной зависимости прочности твердых тел и ее связи с механизмом разрушения было проведено Журковым с сотрудниками [16, см. также **].

яий вязкости различных полимеров при произвольных температурах описываются одинаковыми зависимостями тПр от упр или от Р), поэтому их расчет и графическое построение важны для качественных и количественных оценок соответствующих характеристик полимеров разных видов. Представленные на рис. 6.10 и 6.11 .зависимости являются температурно-инвариантными, строго говоря, лишь для полимолекулярных полимеров одинакового состава. Универсальность и температурная инвариантность вязкости в

Измерение в широком интервале температур при разных скоростях нагрева (или охлаждения) относительных изменений длин или объемов, а также теплоемкости позволяет оценивать значения коэффициентов линейного и объемного расширения, а также ширину температурных интервалов релаксационных и фазовых переходов. Наиболее резкие изменения теплофизических характеристик полимеров наблюдаются при охлаждении в областях стеклования и кристаллизации, а при нагревании — в областях размягчения и плавления.

10. Коршак В. В. Химическое строение и температурные характеристик!! полимеров. М., 1970. 419 с.

В процессе эксплуатации и переработки полимерные материалы подвергаются совместному воздействию различных факторов — тепла, света, кислорода воздуха, радиации, химических реагентов, механических сил, а также микроорганизмов. При этом протекают различные физические и химические процессы, приводящие к ухудшению физико-механических свойств полимера. Чаще всего ухудшение эксплуатационных характеристик полимеров вызывается разрывом химических связей в основной цепи макромолекулы и уменьшением их молекулярной массы.

Работа 71. Определение термических характеристик полимеров на приборе с одновременной записью кривых ДТА и термомеханических

Одной из важнейших электрических характеристик полимеров является удельное электрическое сопротивление или обратная ему величина — удельная электропроводность. Электропроводность по-

Работа 71. Определение термических характеристик полимеров на приборе с одновременной записью кривых ДТА и термомеханических кривых




Характере зависимости Химически эквивалентны Химически очищенной Химически связанной Химической экспертизы Химической индустрии Химической литературы Химической нефтехимической Химической обработкой

-
Яндекс.Метрика