Главная --> Справочник терминов


Химических потенциалов Из исследованных каучуков лучшими эластическими свойствами в широком интервале температур обладает полимер, полученный из политетрагидрофурана молекулярной массы 1000. Для этого состава изучалось влияние полидисперсности полимердиола на свойства каучука и его вулканизатов. Естественно, что более высокий уровень эластичности имеют полимеры, содержащие значительное количество высокомолекулярных фракций. В области положительных температур- эластичность по отскоку является функцией полидисперсности полиэфира (рис. 2). Падение эластичности полимеров с увеличением коэффициента полидисперсности объясняется увеличивающейся нерегулярностью в распределении уретановых групп по цепи. Для полимеров, полученных на основе механической смеси каучуков, на температурной зависимости эластичности по отскоку появляются характерные для блокполимеров две области переходов. Нерегулярность физических узлов и химических поперечных связей при значениях

Естественно, что сегментированные эластомеры могут иметь трехмерную структуру. Однако увеличение концентрации химических поперечных связей неизбежно уменьшает взаимодействие в жестких сегментах, а последнее влечет за собой снижение твердости, механической прочности и разрывного удлинения. Особенности пространственной структуры этих полимеров определяют поведение их при воздействии температуры. При повышенных температурах сетка разрушается, и эластомеры проявляют все признаки термопластичности.

На рис. 1. 18 приведены восемь наиболее характерных релаксационных процессов, которые наблюдаются в наполненных сшитых линейных полимерах (резины). В стеклообразном состоянии обычно наблюдаются процессы у'. V и р. Это группа релаксационных механизмов, связанных с подвижностью боковых привесков макромолекул и отдельных ее участков намного меньших сегментов полимерной цепи. а-Процесс соответствует стеклованию, связанному с замораживанием сегментальной подвижности в неупорядоченной части каучука; а'-процесс — потере подвижности сегментов в жесткой части каучука, адсорбированного на активном наполнителе; Я-процесс объединяет группу релаксационных процессов, связанных с подвижностью надмолекулярных структур; ф-процесс соответствует подвижности частиц активного наполнителя и б-процесс — химической релаксации, связанной с подвижностью химических поперечных связей сшитого полимера. Таким образом, три релаксационных процесса ос', А и ф тесным образом связаны с коллоидно-дисперсной структурой полимеров.

При «построении моделей сеток, состоящих из физических узлов, исходят из представлений о динамическом равновесии между разрывом и восстановлением физических узлов в недеформированном полимере. Если полимер деформируется, то равновесие нарушается и происходит перегруппировка узлов и цепей, чем и объясняются медленные вязкоупругие процессы в полимерах. Это значит, что независимо от представлений о природе физических узлов необходимо принять, что время жизни их, с одной стороны, значительно больше, чем время оседлой жизни сегментов, и, с другой стороны, значительно меньше времени жизни химических поперечных связей.

Поперечное сшивание приводит к появлению еще одного типа узлов пространственной сетки — химических поперечных связей с высокой прочностью и большим «временем жизни», чем у физических узлов сетки. Существование сложной пространственной сетки у эластомеров существенно для понимания природы медленных релаксационных процессов, так как все типы узлов сетки характеризуются своими временами жизни и соответственно релаксационными переходами и дискретным спектром времен релаксации TJ, tg, ••, т„,

Релаксационные переходы в полимерах проявляются на разных уровнях их молекулярной и надмолекулярной организации. Данные релаксационной спектрометрии для медленных релаксационных процессов показывают, что на непрерывном спектре времен релаксации (см. рис. 5.1) сшитых наполненных эластомеров кроме известных -у- и (3-переходов, связанных с мелкомасштабными движениями боковых групп и малых участков макромолекул, и а-перехо-да, связанного с подвижностью свободных сегментов неупорядоченной части эластомера, наблюдается еще 6—8 переходов, которые большей частью могут быть отнесены к медленным релаксационным процессам. Некоторые из них характерны лишь для неполярных эластомеров. Так, а'-переход, обязан потере подвижности сегментов в жесткой части каучука, адсорбированного на частицах активного наполнителя: Кг, 1г и Яз-переходы объединяют группу из релаксационных процессов (штриховая часть кривой), связанных с временами жизни упорядоченных микрообластей (микроблоков трех типов), ф-переход соответствует подвижности самих частиц наполнителей как узлов сетки полимера, а 6-переход соответствует химической релаксации, связанной с подвижностью химических поперечных связей, наблюдаемой в условиях эксплуатации при длительных временах наблюдения. Предполагается, что каждый максимум на непрерывном спектре соответствует отдельному релаксационному переходу.

Сшитые аморфные полимеры при небольшом числе химических поперечных связей между макромолекулами характеризуются термомеханической кривой, приведенной на рис. V. 5. Узлы сетки препятствуют относительному перемещению центров тяжести полимерных цепей. Поэтому вязкое течение не наблюдается даже при высоких температурах. Температурная область высокоэластично-сти расширяется, и ее верхней границей становится температура химического разложения полимера (Гразл) (см. рис. V. 5).

Образование химических поперечных связей в облученных полимерах интенсивно развивается после перехода полимера из стеклообразного состояния, в котором он подвергался облучению, в высокоэластическое (рис. 16.3). Это объясняется проявлением подвижности сегментов макромолекул в высокоэластическом и

рые остаются линейными, или могут приводить к образованию химических поперечных связей между исходными линейными макромолекулами. Характерны для полимеров реакции межцепного обмена, которые влияют на кинетику и механизм не только процессов химических превращений макромолекул, но и их образования [5].

Очевидно, что число свободных концов, согласно вышепринятой характеристике сетки, равно удвоенному числу исходных макромолекул, из которых образован данный участок сетчатой структуры. Для достаточно плотно сшитых сеток, когда Nc^>b, влиянием свободных концов на структуру сетки можно пренебречь. Тогда для густых сеток Ni- = v, т. е. число отрезков цепей между узлами сетчатой структуры равно числу узлов сетки, и все основные свойства сетчатой структуры определяются этим пар-а-метром. Так, модуль сдвига или растяжения такой сетки прямо пропорционален Nc или v (см. ч. 2). Эти положения справедливы для сетчатых структур, в которых межмолекулярное взаимодействие в участках между узлами сетки пренебрежимо мало и не влияет на свойства сетчатых эластомеров. Если же меж;молеку-лярное взаимодействие между отрезками цепей сетки велико (пластики, волокна), то его вклад в механические свойства таких сеток будет существенным, что необходимо учитывать при их описании. В этом случае модуль сетки определяется этими физическими силами межмолекулярного взаимодействия и число химических узлов не влияет на его величину. С повышением температуры силы межмолекулярного взаимодействия преодолеваются тепловым движением сегментов макромолекул, и механические свойства сетки определяются числом химических поперечных связей (узлов сетки).

Повышение молекулярной массы, возникновение редких химических поперечных связей препятствуют скольжению макромолекул и тем самым способствуют ориентации, кристаллизации и упрочнению. Если исходная кристаллическая структура полимера такова, что при деформации возможно ее разукрупнение и скольжение образующихся блоков в направлении деформирования без их разрыва, то прочность и разрывное удлинение довольно высоки. Так, при уменьшении размера сферолитов в изо-тактмческом полипропилене с 300—500 до 10—20 мкм происходит повышение прочности при разрыве от 6 до 30 .МПа, а относительное удлинение растет от 5—7 до 600%

Основными условиями фазового равновесия системы является равенство температур, давлений и химических потенциалов каждого компонента в равновесных жидкой и паровой фазах [19]

Разность химических потенциалов одного и того же компонента в разных фазах является движущей силой в процессе массо-

передачи между фазами, так же как разность температур — в термических, а разность давлений — в механических процессах. Равновесие между фазами (системами) наступает, когда при постоянных давлениях и температурах разности химических потенциалов для каждого компонента системы уменьшаются -до нуля. Так как для реальных компонентов изменение химических потенциалов пропорционально изменению летучестей или активностей, то равенство летучестей или активностей одного и того же компонента в разных фазах также является признаком равновесия системы

При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения ДЯ в большинстве случаев мала; в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера и растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров.

Изучение ММР осуществляют путем фракционирования полимера подходящим способом, главным образом - методами дробного растворения и осаждения. При добавлении к раствору полимера значительных количеств осадителя или при охлаждении происходит осаждение части полимера. Условием равновесия между двумя фазами в бинарной системе является равенство химических потенциалов в обеих фазах (см. гл. 2). Температура, при которой происходит разделение фаз (Тр), определяется упрощенным уравнением

Значение В является также мерой сродства между растворителем и полимером. Растворение полимера - самопроизвольный процесс, сопровождающийся уменьшением химических потенциалов. Поэтому коллигативные характеристики, в том числе и осмотическое давление я0, являются мерой интенсивности взаимодействия между полимером и растворителем. В хорошем растворителе значения В велики. При растворении полимера в плохом растворителе происходит минимальное изменение кол-лигативных свойств.

Газо- и паропроницаемость полимеров - способность полимерных материалов пропускать газы или пары при заданной разности химических потенциалов. Движущая сила процесса - перепад давления, температуры, концентрации.

С этим же связана и проблема переменной гибкости цепей в более широком плане — в частности, при явлениях сегрегации [28]. Один из наиболее интересных экспериментальных фактов в данном случае — огромное значение «термодинамической движущей силы» (т. е.. усредненных по объему локальных градиентов химических потенциалов). Эта сила способна преодолеть огромную

Основными условиями фазового равновесия системы является равенство температур, давлений и химических потенциалов каждого компонента в равновесных жидкой и паровой фазах [19]

Разность химических потенциалов одного и того же компонента в разных фазах является движущей силой в процессе массо-

передачи между фазами, так же как разность температур — в термических, а разность давлений — в механических процессах. Равновесие между фазами (системами) наступает, когда при постоянных давлениях и температурах разности химических потенциалов для каждого компонента системы уменьшаются до нуля. Так как для реальных компонентов изменение химических потенциалов пропорционально изменению летучестеи или активностей, то равенство летучестеи или активностей одного и того же компонента в разных фазах также является признаком равновесия системы




Хиноидное соединение Хинолиновых производных Хлопковая целлюлоза Хлорангидриды карбоновых Характеристики приведены Хлорангидридов гидроксамовых Хлоргидрата гидроксиламина Хлорирования полиэтилена Хлорирование полиэтилена

-
Яндекс.Метрика