Главная --> Справочник терминов Интенсивности облучения жны зависеть главным образом от таких характеристик материала, как его сопротивление распространению трещины R, критический коэффициент интенсивности напряжения Кс и модуль упругости Е. Данные по росту трещины с докритической скоростью, полученные различными исследователями [12—15] для ПММА, представлены на рис. 9.7. График в логарифмическом масштабе выявляет протяженный линейный участок (рост скорости а от 10~8 до 10~2 м/с в интервале значений коэффициентов интенсивности напряжения 0,8—1,4 МН/м3/2). Экспериментальное и теоретическое исследование непрерывного роста трещины в вязкоупругой среде проводил Кнаусс [29]. На примере полиуретанового эластомера («солитан ИЗ») он изучил рост трещины при чистом сдвиге и получил решение вязкоупругой граничной задачи на собственные значения о распространении трещины в изотропном однородном несжимаемом твердом теле. Он нашел, что получаемая ранее особенность напряжения у вершины трещины исчезает. При таких условиях коэффициент интенсивности напряжения описывает лишь условия дальнего поля нагружения. Кнаусс установил, что энергия разрушения, зависящая от скорости процесса, по существу, является произведением «внутренней энергии разрушения», вероятно, молекулярной природы и безразмерной функции, которая учитывает реологию материала, окружающего вершину трещины. Для полиуретанового эластомера внутренняя Характеристики возникновения трещины серебра и ее роста определяются исходным коэффициентом интенсивности напряжения Ко, а не приложенным напряжением Ка<Кт трещины серебра не возникают К.о<Кп трещины серебра возникают, но их рост прекращается Скорость роста трещины серебра в длину исследовалась многими авторами. Многие до сих пор не решенные проблемы, касающиеся перехода материала матрицы в вещество такой трещины и реологических свойств последней, значительно усложняют любое количественное описание распространения трещины серебра. По этой причине здесь не приводится детального описания различных методов, но упоминаются их основные особенности. Механические методы исследования разрушения ПММА [15, 50, 102, 127, 133] и ПК [127, 144] позволили получить эмпирические выражения для скорости роста трещины серебра d(ajrrp)jdt, в которые входят коэффициенты интенсивности напряжения. Камбур [76], а также Маршалл и др. [102, 133] подчеркивают важность течения окружающей среды сквозь пористый материал такой трещины. Верхойлпен-Хейманс [155] сформулировал модель роста трещины серебра на основе анализа напряжения и деформации в ее окрестности и с учетом реологических свойств ее вещества. В тех случаях, когда длина такой трещины оказывалась пропорциональной длине обычной трещины [15, 144, 177], эмпирическая закономерность роста последней (например, выражение (9.22)) также описывала рост трещины серебра. Скибо, Херцберг и Мансон [191] изучали характеристики роста усталостной трещины в полистироле в интервале значений коэффициента интенсивности напряжений и частоты. Образцы с нанесенным односторонним надрезом и испытываемые на растяжение компактные образцы, изготовленные из листов промышленного полистирола (с молекулярной массой 2,7 -105), были подвергнуты циклическому нагружению с постоянной амплитудой на частотах 0,1, 1, 10 и 100 Гц, что соответствовало скоростям роста усталостной трещины от 4;Ю~7 до 4Х X10~3см/цикл. При заданном значении интенсивности напряжений скорость роста усталостной трещины уменьшается с увеличением частоты, причем само уменьшение скорости роста наиболее сильно выражено при больших значениях интенсивности напряжения. Чувствительность данного полимера к частоте во всем исследованном интервале значений была объяснена влиянием переменной компоненты ползучести. В макроскопическом масштабе поверхность разрушения была двух различных типов. При низких значениях интенсивности напряжений наблюдалась зеркальная поверхность с высокой отражательной способностью, которая с увеличением интенсивности напряжения превращалась в шероховатую матовую поверхность. Повышая частоту, сдвигали переход между этими типами поверхности разрушения в сторону более высоких значений интенсивности напряжений. Микроскопическое исследование^ зеркальной поверхности выявило распространение обычной трещины вдоль одной трещины серебра, в то время как исследование шероховатой поверхности выявляло рост обычной трещины через большое число трещин серебра, причем все они в среднем были перпендикулярны оси приложенного напряжения. Электронное фракто-графическое исследование зеркальной области выявило много параллельных полос, перпендикулярных направлению роста обычной трещины, каждая из которых формировалась в процессе ее прерывистого роста в ряде усталостных циклов. Размер таких полос соответствовал размеру пластической зоны у вершины трещины, рассчитанной по модели Дагдейла. При высоких значениях интенсивности напряжений была получена новая система параллельных следов в матовой области, которая соответствовала приращению длины трещины за один цикл нагружения [191]. Нетривиальное решение внутренней задачи имеет асимптотику на больших расстояниях от контура дефекта. Выражение для асимптотики содержит главный член того же вида, что и во внешней задаче, который характеризуется своим внутренним коэффициентом интенсивности напряжения Nt. Условие сопряженности решений внешней и внутренней задач имеет вид: о"6 = Кс/(пс)1/г, где Кс — критическое значение фактора интенсивности напряжения в момент разрушения, и это идентично выражению По разрывной прочности ар рассчитывали критическое значение коэффициента интенсивности напряжения: ангармоничности 36 интенсивности напряжения 74 ел., диаграммы аи — ея для каждого параметра простого нагруже-ния X, при разных скоростях изменения интенсивности напряжения, а также для каждого значения а„ Фотоинициирование зависит только от интенсивности освещения и не зависит от температуры. Скорость фотонолимеризашш пропорциональна корню квадратному из интенсивности облучения; следовательно, обрыв кинетической цепи происходит в результате соединения двух растущих макрорадикалов. В отличие от других методов инициирования, при фотоинициировашш степень полимеризации возрастает с повышением температуры реакционной среды. Молекулярный вес образующихся полимеров но законам цепной полимеризации пропорционален скорости реакции роста цени и обратно пропорционален скорости инициирования (скорость образования начальных активных радикалов). При повышении температуры фотополимеризации скорость, реакции роста увеличивается, скорость же реакции инициирования не изменяется, что приводит к увеличению молекулярного веса полимера с повышением температуры фотополнмерп-зации. Кинетика радиационной полимеризации мало отличается от кинетики фотополимеризации. Скорость реакции пропорциональна корню квадратному из интенсивности облучения (при интенсивности не более 100 рентген/мин.). Молекулярный вес образующегося полимера возрастает с повышением температуры реакционной среды, скорость инициирования не зависит от температуры реакции. При одинаковой структуре полимера скорость реакции окисления зависит от размера испытуемого образца (соотношения площади и толщины), интенсивности облучения солнечным светом, температуры, концентрации кислорода. На рис. 78 приведены результаты определения интенсивности окисления пленки полибутадиена в различных условиях. Мерой интенсивности служит количество поглощенного кислорода в миллимолях на моль мономера,.составляющего звено полимерной цепи. Полимеры тетрафторэтилена характеризуются высокой стойкостью к действию различных агрессивных сред и хорошей термической устойчивостью. Однако использование их в качестве защитных покрытий металлов затруднительно вследствие плохой адгезии политетрафторэтилена ко всем известным в настоящее время клеевым пленкам, при помощи которых можно было бы произвести крепление этого полимера к металлической поверхности. Для улучшения адгезионных свойств пленок политетрафторэтилена применен метод привитой сополимеризации его со стиролом*. Пленки опускают в прививаемый мономер и подвергают у-облучению. При небольшой интенсивности облучения количество привитого стирола может достигнуть 10% вес., однако пленка заметно увеличивается в сбъ-еме. При интенсивности облучения 350 рентген/час и длительности его воздействия 160 час. вес пленки удваивается. Еще более интенсивное облучение политетрафторэтилена и стирола приводит к заметному возрастанию скорости гомополимеризации стирола, поскольку в этих условиях он полимеризуется быстрее, чем успевает проникнуть во внутренние слои пленки полимера. Очевидно, в начале реакции прививка полистирольных боковых цепей происходит только на поверхности пленки. Образующийся в ее верхнем слое привитой сополимер набухает в мономере, и молекулы стирола проникают в следующие слои политетрафторэтилена. Следовательно, для получения однородного сополимера необходимо, чтобы 381. Скорость катионной полимеризации изобутилена, протекающей при облучении УФ-излучением в отсутствие сока-тализатора, пропорциональна концентрации мономера в первой степени и концентрации .катализатора (VC14) в степени 0,4. Вычислите значения энергии активации и предэкспоненциаль-ного множителя в уравнении Аррениуса при постоянной интенсивности облучения, если [М]0 = 1,2 моль -л"1, [VC14] = = 8-10~3 моль -л"1, а скорость полимеризации зависит от температуры следующим образом: реакций полимеризации. Оно состоит в возбуждении молекулы мономера в результате поглощения кванта света и в генерировании затем свободных радикалов. В отличие от термической полимеризации скорость фотополимеризации не зависит от температуры. Скорость растет с увеличением интенсивности облучения. В этом случае подтверждением цепного характера реакции является протекание полимеризации после удаления источника света (рис. 1.1). Радиационная полимеризация в принципе аналогична фотополимеризации. Скорость ее также растет с увеличением интенсивности облучения и не зависит от температуры. Скорость радиационной и фотополимеризации может быть увеличена добавлением веществ, которые легко распадаются под действием радиационного излучения или света (так называемые сенсибилизаторы полимеризации), например полигало-гениды —ССЦ, СгС16 и др. *кция расщепления молекулярных цепей полимера, активированная кислородом воздуха. Интенсивность процессов, протекающих при облучении полимеров, зависит от длины волны, интенсивности облучения, наличия инициаторов и природы полимера. 381. Скорость катионной полимеризации изобугнлеыа, протекающей при облучении УФ-излучением в отсутствие сока-га,1 i го атор а, пропорциональна концентрации мономера в первой степени и концентрации катализатора (VC14) в степени 0,4. Вычислите значения энергии активации и предзкспоненциаль-iroro множителя в уравнении Арреииуса при постоянной интенсивности облучения, если [М]0 - 1,2 моль -л"1, [VC14] = = 8-10"s молъ-л"1, а скорость полимеризации зависит от температуры следующим образом: щей ртутной лампы (дающей свет с длиной волны 3800—7600 А), погруженной в реакционную жидкость6. Описано облучение вольфрамовой лампой накаливания7 для сульфохлорирования в алкильной группе алкилзамещенных ароматических углеводородов. О минимально необходимой интенсивности облучения данных не имеется. Безусловное значение имеет материал стенок реактора. Самым подходящим является кварц; весьма пригодно стекло «пирекс» или другое, близкое к нему по составу8. Фотохимической деструкцией называется процесс деструкцш происходящий под действием световой энергии. Степень фотохимь ческой деструкции зависит от длины волны ультрафиолетовог света (энергии квантов), интенсивности облучения, условий опыт и строения исследуемого полимера. При облучении некоторых пс лимеров ультрафиолетовым светом (при повышенных темпер ат^ pax) происходит деполимеризация с выделением мономера, Этс Процесс получил название фотолиза. Исключением соединения Исключить попадание Идеальной структурой Искреннюю признательность Испытаний полимерных Испытания принимают Иллюстрируется следующими Испаряющей поверхности Испарения сжиженного |
- |