Главная --> Справочник терминов


Исследования релаксационных При окислении бмс-(2-нитрофенил)-дисульфида смесью азотной и соляной кислот [9876] получается 2-нитробензолсульфохлорид. После тщательного исследования различных методов получения этого соединения указанный здесь метод признан самым удобным. бмс-(2-Метил-4-антрахинонил)-дисульфид превращен путем окисления азотной кислотой в сульфокислоту [987в].

Оптическая спектроскопия с успехом используется при решении вопросов количественного и качественного анализа, структурно-группового анализа, изучения внутри- и межмолекулярных взаимодействий, конфигурации молекул, а также исследования различных видов изомерии. Она применяется, в частности, при изучении кинетики химических реакций, определении констант диссоциации кислот и оснований и т. д.

За последние годы проведены обширные исследования различных псевдоароматических, небензоидных систем. К ним относят циклические углеводороды с чередующимися простыми и двойными связями, не отвечающие правилу Хюккеля, например циклобутадиен и его производные типа дифени-лена; рассчитаны гипотетические структуры типа пенталена

В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров: УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-проникающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров.

Расчетные исследования различных технологических схем в

систематического исследования различных катализаторов для

Многочисленные исследования различных замещенных гликолей и 1,2-аминоспиртов показали, что мигрирующая группа (Н, алкил, арил, галоген) выполняет роль «уклеофильного реагента, атакуя (+Х заряженный атом углерода, возникающий после отщепления одного из протонированных гидро-ксилов. Формирование карбкатиона и переходного состояния можно себе представить таким образом:

Расширение и углубление знаний по общей химии моносахаридов создаст прочную базу и для развития синтетического направления в химии Сахаров, причем собственно синтетические исследования и изучение реакционной способности, в сущности, представляют собой единый комплекс. В химии углеводов синтетические исследования заметно отличаются по направленности от аналогичных исследований в других областях органической химии. В частности, полный синтез моносахаридов и их производных почти не привлекал внимания исследователей. Как известно, основной задачей органического синтеза является подтверждение строения того или иного соединения и препаративное получение его для исследования различных свойств, особенно для изучения зависимости между строением и реакционной способностью или биологической активностью. Вследствие большой доступности простейших моносахаридов, в ряду углеводов эти цели проще всего достигаются частичным синтезом — получением нужного соединения, исходя из другого моносахарида. Таким образом, задачи синтетических работ в этой области сводятся к изысканию наиболее удобных последовательностей реакций, позволяющих производить требуемые структурные и стереохимические изменения в исходном моносахариде. Синтетическое направление органически срастается здесь с изучением реакционной способности функциональных групп в молекуле моносахарида.

В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров: УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-проникающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров.

Без знания номенклатуры органических соединений не может обойтись ни один химик, причем не только химик-органик, но и химики других специальностей, поскольку органические соединения давно стали объектами исследования различных отраслей химии, биологии и др. наук. Химическая номенклатура — это язык, необходимый для общения исследователей органических соединений друг с другом. Хотя в настоящее время существует достаточно много компьютерных программ, позволяющих называть органические соединения и по названию соединения восстанавливать его структурную формулу, понятно что, читая литературу невозможно «за каждым словом лезть в словарь». Кроме того, относительно доступные программы непригодны при работе с достаточно сложными соединениями, а главное они оперируют только с названиями на английском языке.

Существование полосатой структуры у аморфных полимеров не было подтверждено другими исследователями. Исследования различных полимеров, находящихся в аморфном застеклованном состоянии показали наличие зернистой структуры в этих полимерах. Так, Ии и Джейл [15, 16] обнаружили в полиэтилентерефталате в аморфном состоянии сферические частицы — зерна диаметром 75 А, которые находятся на расстоянии ~ 125 А друг от друга.

Для исследования релаксационных свойств полимеров разного строения необходимо иметь сведения об изменении их е' и tg & в широком диапазоне частот и температур.

Наиболее распространены следующие четыре способа исследования релаксационных явлений: 1) релаксация напряжения, 2) ползучесть, 3) кривая напряжение—деформация, 4) многократные циклические деформации.

Многократные циклические деформации. Как видно из рис. 9.11, после некоторого определенного числа циклов деформации устанавливается стационарный режим деформирования, характеризующийся возникновением стабильной для данных условий надмолекулярной структуры. Для исследования релаксационных свойств полимеров представляет интерес измерение способности их к релаксации именно в этом режиме. При этом желательно, чтобы величина предельной деформации за цикл была минимальной, чтобы проводить исследования с практически недеформированным полимером в линейной области упругости. Это позволит легче установить количественную взаимосвязь свойств со структурой полимера, которая, конечно, изменяется при большой деформации (десятки и сотни процентов). Желательно также в процессе испытания варьировать время цикла в возможно более широких пределах, т. е. иметь возможность значительно изменять частоту воздействия силы на образец.

Для реальных систем именно такая ситуация типична, и сложный релаксационный процесс представляют как суперпозицию независимых идеальных релаксационных процессов со своими временами релаксации, вводя функцию распределения времен релаксации (релаксационный спектр). В третьей части мы рассмотрим различные экспериментальные методы исследования релаксационных свойств полимеров и покажем, что наиболее эффективны методы, основанные на воздействии на полимер периодическими механическими силами и электрическим и магнитным полями с определенной частотой. Пока же остановимся на вопросе об особенностях перестройки структуры в полимерах, определяющих специфику их релаксационных свойств.

Изучая последовательно при разных температурах те или иные деформационные процессы, можно выявить различные релаксационные процессы. Этот подход мы применили для исследования релаксационных процессов в области температур выше Гст.

В работе [145] этот метод был применен для исследования релаксационных процессов эластомера ЭКМ.С-30 при режиме заданной скорости растяжения. На рис. IX. 6 приведены температурные зависимости для линейного и сшитого образцов. В области стеклования (Гст « 218 К) кривая 3 показывает зависимость в соответствии с уравнением Вильямса — Ланделла — Ферри (ВЛФ) и, как видно, это уравнение согласуется с экспериментом в интервале на 15 К выше Гст. Расхождение с экспериментом с повышением температуры указывает на переход к другим релаксационным процессам, которые видны из данных, приведенных на рис. IX. 7 (Я-переходы). Обращает на себя внимание, что в области стеклования (а-процесс механической релакса-

Среди релаксационных процессов важнейшим для полимеров является а-релаксация (стеклование). При этом в зависимости от того, действуют на полимер внешние силы или нет,, наблюдается механическое или структурное стеклование, зависящие соответственно от частоты и скорости охлаждения. Ниже температуры структурного стеклования Тст механическое стеклование не наблюдается. Структурная и механическая релаксация являются наиболее универсальными методами исследования релаксационных переходов в полимерах и важно,, что имеется определенная взаимосвязь между механическими и структурными релаксационными переходами.

Для исследования релаксационных процессов, внутри- и межмолекулярных взаимодействий в полимерах большое значение имеют акустические методы, которые также могу г быть использованы для определения теплоемкости при температур<1х, близких к абсолютному нулю, прочности высокомолекулярных материалов, ориентации макромолекул, степени сшичания и т. Д. Наличие четкой зависимости химического строения, физической структуры, молекулярной подвижности и т. д. от 1аких параметров, как скорость и коэффициент поглощения звука, позволяет быстро и точно измерить Е', Е" и tg q> в широком диапазоне частот и амплитуд без изменения структуры или разрушения изделия, что облегчает интерпретацию полученных результатов; в случае акустических спектрометров эти измерения автоматизированы. Особо перспективно применение акустических методов в дефектоскопии полимеров и при неразрушающих испытаниях. См. [14].

4. Подавление запрещенных .переходов и ослабление взаимодействия между индивидуальными резонансами делают ЭПР в сильных полях удобным методом исследования релаксационных эффектов и эффектов типа «переноса насыщения», используемых для детектирования «сверхмедленных» движений больших биомолекул. Для твердых растворов свободных радикалов модель невзаимодействующих спиновых пакетов в сильных полях становится более реалистичной. Экспериментально мы весьма часто наблюдали интенсивные сигналы дисперсии, свидетельствующие об адиабатически быстром прохождении «узких» спиновых пакетов.

Для исследования релаксационных процессов, внутри- и межмолекулярных взаимодействий в полимерах большое значение имеют акустические методы, которые также могу г быть использованы для определения теплоемкости при температур<1х, близких к абсолютному нулю, прочности высокомолекулярных материалов, ориентации макромолекул, степени сшичания и т. Д. Наличие четкой зависимости химического строения, физической структуры, молекулярной подвижности и т. д. от 1аких параметров, как скорость и коэффициент поглощения звука, позволяет быстро и точно измерить Е', Е" и tg q> в широком диапазоне частот и амплитуд без изменения структуры или разрушения изделия, что облегчает интерпретацию полученных результатов; в случае акустических спектрометров эти измерения автоматизированы. Особо перспективно применение акустических методов в дефектоскопии полимеров и при неразрушающих испытаниях. См. [14].

Практически ни в одной области применения полимерных материалов нельзя отвлечься от их прочности. Поэтому как конструкторов, использующих полимерные материалы, так и технологов, изготовляющих их, интересуют прежде всего факторы, от которых зависит прочность изделий в условиях эксплуатации. К сожалению, особенности полимерных материалов таковы, что инженеры лишены возможности пользоваться классическими представлениями о сопротивлении материалов. Создание сопромата для полимеров является одной из наиболее существенных научно-технических задач, а предпосылкой должна явиться теория прочности и деформационных процессов. Разработка ее осуществлялась, в первую очередь, путем исследования релаксационных явлений. В последнее время достигнуты также значительные успехи в области изучения надмолекулярных структур полимерных материалов и обнаружено большое влияние типа таких структур на механические свойства полимеров, в особенности на их прочность.




Избыточным давлением Избыточной поверхностной Избыточном количестве Избежание образования Идеальном растворителе Избежание разложения Избирательным поглощением Избирательное отщепление Индуктивными эффектами

-
Яндекс.Метрика