Главная --> Справочник терминов Известной абсолютной Физические свойства смесей, особенно таких, как СНГ, в сильной степени зависят от их химического состава. Пропан может рассматриваться как чистый углеводород CaHg парафинового ряда, а бутан — в виде нормального изомера — нормального бутана и изомера с боковой цепью — изомербутана и их смесей. Это же относится к пропилену, ненасыщенному углеводороду СзНе, бу-тенам, конкретно ненасыщенным изомерам 1-бутен, 2-бутен и изо-бутилен с общей формулой C^Hg. На коммерческом рынке всего мира можно встретить СНГ, содержащие преимущественно либо пропан с примесями изомеров бутана до 5 %, либо бутан в различном сочетании его изомеров с примесями углеводородов С3. Такие физические свойства СНГ, как давление насыщенных паров, удельный объем и т. п., достоверно могут быть выявлены только после точного определения их химического состава путем пересчета по хорошо известным значениям аналогичных показателей для чистых компонентов. По этой причине целесообразно рассмотреть физические свойства компонентов углеводородов группы Сз и С4, наиболее типичных для обоих видов СНГ. При рассмотрении необходимо учитывать и уже отмечавшуюся харак- Здесь /Пг — масса кинетической единицы; Кг — коэффициент упругости связи кинетической единицы с окружающей средой. Так как m.i=piVi, то, вычислив из формулы (5.5) по известным значениям Bi и Кг величину т,-, можно определить VV Отметим, что для сложных флуктуационных структур (какими являются структурные микроблоки в эластомерах) формула (5.5) неприменима. Знание кинетики макромолекулярных реакций и характера распределения звеньев в полимере имеет большое практическое значение. С одной стороны, определив константы скорости реакции и рассчитав по ним распределение звеньев, можно предсказать некоторые химические и физико-механические свойства полимерных продуктов реакции. С другой стороны, изменяя условия реакции, а вместе с ними и значения соответствующих кинетических констант, можно получать полимерные продукты, обладающие заданными свойствами. Однако в случае макромолекулярных реакций, характеризующихся не одной, а тремя константами скорости, определение этих констант по опытным данным существенно осложняется. Один из возможных подходов к решению задачи — экспериментальное определение значений NO, NI и N2. Зная суммарную скорость реакции и значения Wo, N1, N2, т. е. мольные доли триад ААА, ААВ и ВАВ не менее, чем в трех точках кинетической кривой, можно рассчитать эти константы по уравнению (П. 1). Этот путь, однако, не всегда возможен, поскольку определение концентраций триад, например, методом ЯМР-спектроскопии пока практически возможно лишь для весьма ограниченного числа полимеров. Концентрации триад можно рассчитать в том случае, если удается подобрать такие условия реакции, при которых она протекает без эффекта соседа. Тогда при любой конверсии продукты представляют собой сополимеры со случайным распределением звеньев, для которых легко можно рассчитать значения No, NI и N2- Если три таких сополимера с разным относительным содержанием прореагировавших и непрореагировавших звеньев взаимодействуют в условиях, в которых проявляется эффект соседа, то можно [в соответствии с уравнением (II. 1)] по наклону начального участка кинетических кривых и известным значениям N0, Nt, N2 определить константы ko, k\ и k% (метод полимерных моделей). Плотность упаковки вешества количественно оценивается та] называемым коэффициентом упаковки, которой представляет co6oi отношение собственного объема молекул к истинному объему тел^ составленного из данных молекул. Собственный объем молекул рас считывается теоретически, исходя из определенного химическог* строения вещества, т. е. по известным значениям радиусов ато.мов входящих в состав молекул, при условии, что все атомы касаютез друг друга. Истинный объем вещества (V) вычисляется на осноа< Кроме того, распределения по коэффициентам седиментации полимера, полученные обычным способом и соответствующие конечным концентрациям С, могут быть экстраполированы к С-»0 при использовании известного приема "графического фракционирования" [8]. По экстраполяционным прямым, соответствующим "графическим фракциям", можно определить S0 и ks этих фракций, рассчитать М^ и распределения по S0 преобразовать в распределения по ММ. По известным значениям S0 и Мь "графических фракций" можно определить параметры уравнений типа Куна-Марка-Хаувинка и на основе соответствующих гидродинамических теорий оценить длину сегмента Куна и гидродинамический поперечник цепи d. Понятие о свободном объеме вещества связано с понятием плотности упаковки его молекул; которая оценивается коэффициентом упаковки, представляющим собой отношение собственного объема макромолекул к истинному объему тела, составленного из данных макромолекул. Собственный объем рассчитывается теоретически по известным значениям радиусов атомов при условии, что все атомы в молекуле касаются друг друга; истинный объем вещества вычисляется на основе экспериментальных значений его плотности (V = М/р). Оно позволяет по известным значениям 7 (определяется из опыта) и °, (берется из справочных таблиц) определить функцию кислотности растворителя или же по известным Я0 и / определить рК° индикатора. Плотность упаковки вещества количественно оценивается так называемы^ коэффициентом упаковки, которой представляет собой отношение собственного объема молекул к истинному объему тела., составленного из данных молекул. Собственный объем молекул рассчитывается теоретически, исходя из определенного химического строения вещества, т. е. по известным значениям радиусов атомов, входящих в состав молекул, при условии, что все атомы касаются Друг друга. Истинный объем вещества (V) вычисляется на основе экспериментальных значений его плотности по формуле V ~~^~ (где М — молекулярный вес вещества; d— его ,плотность). Если обозначить молекулярный все звена полимера через М и плотность полимера через du, то истинный объем, занимаемый одним молем Плотность упаковки вещества количественно оценивается т называемы^ коэффициентом упаковки, которой представляет соб' отношение собственного объема молекул к истинному объему тел составленного из данных молекул. Собственный объем молекул ра считывается теоретически, исходя из определенного химическо строения вещества, т. е. по известным значениям радиусов атоме входящих в состав молекул, при условии, что все атомы if аса ют Друг друга. Истинный объем вещества (V) вычисляется на осно экспериментальных значений его плотности по формуле !/ = -(где М — молекулярный вес вещества; 4 — его ,плотность). Ее. обозначить молекулярный все звена полимера через М и плотное полимера через da, то истинный объем, занимаемый одним мол< звеньев полимера, составит Vn = -~~. Задача сводится к отысканию параметров Qi по известным значениям RJ, взятым для набора эталонных полимеров, для которых величины Q хорошо известны из эксперимента. Число пластичности (П) оценивают из соотношения У + П = 100, %. По известным значениям h и Л: можно оценить приближенно величину модуля упругости при сжатии [4]: Такое родство позволяет поставить вопрос: можно ли распространить на соединения ряда пиперидина правило октантов, действующее в ряду циклогексанона? Ответ на этот вопрос можно было бы дать, изучив дисперсию оптического вращения пиперидонов с известной абсолютной конфигурацией. Для этого был использован синтез 2-фенилпиперидона-4 из оптически активного вещества известной конфигурации: генетическое родство между молекулами во внимание не принимается. Эта система может применяться только к соединениям с известной абсолютной конфигурацией. Если конфигурация неизвестна, то соединение приходится обязательно характеризовать знаком его вращения. (+)-псевдоэфедрина с известной абсолютной конфигурацией хиральных центров, к кислоты (CXVIII) с известной абсолютной конфигурацией, имею- Определение абсолютной активности может быть также произведено путем сравнения в одинаковых условиях активностей исследуемого препарата и образца с известной абсолютной активностью (эталона). Необходимость произвести абсолютные измерения активности возникает, например, при определении сечений ядерных реакций (в частности, при определении выходов продуктов деления тяжелых ядер нейтронами), а также при проведении радиоактивационного анализа. Исследуя таким способом натрийрубидиевую соль (+) -винной кислоты, Биво показал, что она имеет (2R, 3R) -конфигурацию. Правда, применение рентгеноструктурного метода для прямого определения абсолютной конфигурации имеет определенные ограничения. Поэтому в большинстве случаев возникает необходимость проведения корреляций — сравнительных исследований, в которых абсолютную конфигурацию какого-либо хиралыюго соединения устанавливают, сравнивая ее с определенном стандартным веществом с известной абсолютной конфигурацией (об этом см. [1.3.4]). дним из исключений является L-цистеин, который принадле-нт к (Я)-ряду, так как сера по правилам старшинства предпо-ригельнее кислорода. В системе КИП генетическое родство меж-молекулами во внимание не принимается. Эта система может меняться только к соединениям с известной абсолютной коней. Если конфигурация неизвестна, то соединение при-;я обязательно характеризовать знаком его вращения. Правила последовательного старшинства применимы также описанию геометрических изомеров непредельных соедине-. Заместители у каждого конца кратной связи при установ-старшинства должны рассматриваться отдельно. Если за-имеющие более высокое старшинство, расположены ой и той же стороны двойной связи, соединению присваи-префикс Z (от немецкого zusammen — вместе), а если по е стороны, то префикс Е (entgegen — напротив). (Z, ?)-Но-пура алкенов рассматривалась в гл. 5 (ч. 1). Ниже приве-примеры отнесения структур с использованием (Z, ?)-обо-лений. Для обозначения относительной конфигурации могут также использоваться дескрипторы /?* или S*. При наличии в молекуле центров с известной абсолютной конфигурацией и центров, для которых известна только относительная конфигурация, последние обозначаются как R* или S*. Для выявления стереоспецифичности ферментативных реакций [26] используют соединение с одной или несколькими метками н известной абсолютной конфигурацией, например хиральную уксусную кислоту соединению с известной абсолютной конфигурацией. нию с известной абсолютной конфигурацией. В Д/,-номенклатуре за стандарт приняты энантиомеры глицеринового альдегида. Инкремент показателя Инсектицидной активностью Интегральные интенсивности Интегральное уравнение Интегрирования уравнения Интенсификации производства Идентификации карбоновых Интенсивное фиолетовое Интенсивное поглощение |
- |