Главная --> Справочник терминов Извлечения сероводорода низкая эффективность извлечения меркаптанов; Основные недостатки процессов: не достигается комплексная очистка газов от H2S, CO2, RSH, COS и CS2; низкая глубина извлечения меркаптанов и некоторых других сероорганических соединений; при взаимодействии меркаптанов, COS и CS2 с некоторыми растворителями образуются нерегенерируемые в условиях процесса химические соединения; для реализации процессов необходимы высокая кратность циркуляции абсорбента и большие теплоэнергетические затраты (с повышением концентрации «нежелательных» соединений они увеличиваются); абсорбенты и продукты взаимодействия их с примесями, содержащимися в сыром газе, нередко обладают повышенной коррозионной активностью. Сульфинол хорошо растворяет H2S, CO2, RSH, COS, CS2 и углеводороды; он химически и термически стабилен, имеет низкую теплоемкость и давление насыщенных паров, может быть использован для комплексной очистки сухих газов от «нежелательных» серо- и кислородсодержащих соединений, позволяет производить тонкую очистку газов от меркаптанов и от сероуглерода одновременно (степень извлечения меркаптанов 95%); при взаимодействии с СО2 сульфинол незначительно деградирует с образованием диизопропанол-оксазолодона, который имеет щелочную реакцию и хорошо растворяет кислые газы (допустимое содержание его в абсорбенте 10%). Наличие в сыром газе СО2 не приводит к большим потерям сульфинола — на промышленных установках разложение сульфинола в 4—8 раз меньше, чем моноэтаноламина [28, 69]. Продукты разложения легко удаляются из системы в результате того, что до 0,05% регенерируемого раствора подвергается специальной очистке. Поглощающая способность сульфинола примерно в 2 раза выше, чем раствора моноэтаноламина [52]. В условиях равновесия Л^ вытесняет меркаптаны из раствора. Однако при концентрации ее более 0,1$ скорость абсорбции Л^, в значительной мере лимитируется процессами в жидкой фазе. Это позволяет путем подбора условий абсорбции достичь высокую степень извлечения меркаптанов (95*99$) при извлечении СОг на 35-40$ и резко сократить расход щелочи. Экстракция меркаптанов — равновесная реакция. Ее эффективность зависит от концентрации применяемой щелочи, соотношения щелочи и СНГ, рабочих температуры и давления, молекулярной массы меркаптанов и т. п. Для очистки требуются две колонки, расположенные одна за другой: первая — для извлечения основной массы H2S, вторая — для извлечения меркаптанов. Обычно применяют 5—20 %-ный раствор щелочей. Отработанная «Жирботол-процесс». Если в кислых СНГ количество H2S относительно велико, то удобнее и экономичнее применять экстракцию моно- или диэтаноламином, которые регенерируются в специальном резервуаре в процессе паровой десорбции при нагреве до 95 °С и возвращаются для повторного использования. Извлечение H2S осуществляется при температуре 40—60 °С и давлении, соответствующем упругости паров, противотоком в колонке с насадкой. Этот метод позволяет отказаться от применения водных растворов щелочей, эффективно удаляет двуокись углерода и элементарную серу, но недостаточно результативен в отношении извлечения меркаптанов. Иногда встречаются схемы демер-каптанизации СНГ, состоящие из двух последовательных операций: аминовой экстракции и отделочной стадии, щелочной отмывки или «Мерокс-экстракции» (последняя для извлечения меркаптанов). Основные недостатки процессов: не достигается комплексная очистка газов от H2S, CO2, RSH, COS и CS2; низкая глубина извлечения меркаптанов и некоторых других сероорганических соединений; при взаимодействии меркаптанов, COS и CS2 с некоторыми растворителями образуются нерегенерируемые в условиях процесса химические соединения; для реализации процессов необходимы высокая кратность циркуляции абсорбента и большие теплоэнергетические затраты (с повышением концентрации «нежелательных» соединений они увеличиваются); абсорбенты и продукты взаимодействия их с примесями, содержащимися в сыром газе, нередко обладают повышенной коррозионной активностью. Сульфинол хорошо растворяет H2S, CO2, RSH, COS, CS2 и углеводороды; он химически и термически стабилен, имеет низкую теплоемкость и давление насыщенных паров, может быть использован для комплексной очистки сухих газов от «нежелательных» серо- и кислородсодержащих соединений, позволяет производить тонкую очистку газов от меркаптанов и от сероуглерода одновременно (степень извлечения меркаптанов 95%); при взаимодействии с СО2 сульфинол незначительно деградирует с -образованием диизопропанол-оксазолодона, который имеет щелочную реакцию и хорошо растворяет кислые газы (допустимое содержание его в абсорбенте .10%). Наличие в сыром газе СО2 не приводит к большим потерям сульфинола — на промышленных установках разложение сульфинола в 4—8 раз меньше, чем моноэтанол амина [28, 69]. Продукты разложения легко удаляются из системы в результате того, что до 0,05% регенерируемого раствора подвергается специальной очистке. Поглощающая способность сульфинола примерно в 2 раза выше, чем раствора моноэтаноламина [52]. В этих условиях степень извлечения меркаптанов составля- вание для извлечения меркаптанов растворов гидроксидов на- Цеолиты, или молекулярные сита, различаются по диаметру пор. Так, цеолит марки СаА имеет диаметр пор 5 Ангстрем (А). На газоперерабатывающих заводах цеолиты применяются для извлечения сероводорода из при-? родного и попутного газов. Цеолит марки NaX применяется для извлечения меркаптанов из природного газа, а цеолит марки NaA - для глубокой осушки воздуха, природного газа, гелия и других газов от влаги. Степень извлечения меркаптанов, %...,,„.!...60...70 Для извлечения сероводорода из газа в отечественной практике был хорошо освоен МЭА-процесс. Но было известно, что для газов, содержащих COS и CS2, этот процесс непригоден n.s-за разложения МЭА вследствие необратимых реакций с COS и CS2. Проектировщики останавливаются на аналогичном процессе, но с использованием ДЭА (диэтаполамип) в качестве растворителя, не образующего нерегенерируемых соединений с COS и CS2. Нефтяные и природные газы наряду с углеводородами могут содержать кислые газы — диоксид углерода (СО2) и сероводород (H2S), а также сероорганические соединения—серооксид углерода (COS), сероуглерод (CS2), меркаптаны (RSH), тиофены и другие примеси, которые осложняют при определенных условиях транспортирование и использование газов. При наличии диоксида углерода, сероводорода и меркаптанов создаются условия для возникновения коррозии металлов, эти соединения снижают эффективность каталитических процессов и отравляют катализаторы. Сероводород, меркаптаны, серооксид углерода — высокотоксичные вещества. Повышенное содержание в газах диоксида углерода нежелательно, а иногда недопустимо еще и потому, что в этом случае уменьшается теплота сгорания газообразного топлива, снижается эффективность использования магистральных газопроводов из-за повышенного содержания в газе балласта. Если рас= сматривать этот вопрос с указанных позиций, то серо- и кислородсодержащие соединения можно отнести к разряду нежелательных компонентов. Однако такая постановка вопроса не исчерпывает всей полноты проблемы, так как кислые газы являются в частности высокоэффективным сырьем для производства серы и серной кислоты. Поэтому при выборе процессов очистки газов учитывают возможности достижения заданной глубины извлечения «нежелательных» компонентов и использования их для производства соответствующих товарных продуктов. В Канаде, например, сера в зависимости от содержания в газе сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы, а также регламентируются условия разработки и эксплуатации некоторых месторождений [22]. Известны случаи, когда сероводородсодержащий природный газ добывают с целью производства серы, очищенный газ после извлечения сероводорода закачивают обратно в пласт для поддержания пластового давления. В ряде стран мира (США, Канаде, Франции) открытие крупных месторождений природного сероводородсодержащего газа положило начало широкому развитию в 50-х годах добычи и очистки такого газа и производству серы из этого сырья. В Канаде из сероводородсодержащего газа получено около 5,3 млн. т серы (по состоянию на начало 1978 г. доказанные запасы серы составляли 105 млн. т) [23]. Разработаны и применяются процессы селективного извлечения сероводорода, при котором H2S вступает в реакцию с растворителем и окисляется до серы кислородом воздуха в процессе регенерации растворителя (в этом случае в составе комплекса нет установок Клауса). По первому варианту, экономически выгодно очищать газ при большом парциальном давлении сероводорода на входе на установку, по второму варианту — при низком парциальном давлении. Все процессы, приведенные выше, за исключением процессов Ветрококк — H2S * и Стретфорд, основаны на химической или физической абсорбции «нежелательных» серо-кислородсодержащих соединений и последующей десорбции их из абсорбента и направлении кислых сероводородсодержащих газов на установку по производству серы типа Клауса. Процессы Ветрококк — H2S и Стретфорд основаны на абсорбции сероводорода химическим растворителем и окислении его в регенераторе до серы за счет присутствия в абсорбенте соответствующих активных добавок и кислорода, который поступает в нижнюю часть регенератора вместе с воздухом (СО2 в процессе Стретфорд практически не извлекается, его присутствие осложняет процесс). Процессы Ветрококк — H2S и Стретфорд чаще всего применяют для очистки газов с низким содержанием сероводорода, область применения их ограничивается парциальным давлением H2S в очищенном газе до 0,002 МПа и в исходном газе до 0,07 МПа [26] (температура абсорбции 35—45 °С, в результате очистки обеспечивается высокая степень извлечения сероводорода). В СССР окислительно-восстановительные процессы Ветрококк — H2S и Стретфорд не нашли пока практического применения для очистки природных и нефтяных (попутных) газов от сероводорода. За рубежом эти процессы используют, как правило, на установках небольшой мощности. В США процесс Ветрококк не применяют из-за высокой токсичности растворителя [26]. Нефтяные и природные газы наряду с углеводородами могут содержать кислые газы — диоксид углерода (СО2) и сероводород (H2S), а также сероорганические соединения —серооксид углерода (COS), сероуглерод (CS2), меркаптаны (RSH), тиофены и другие примеси, которые осложняют при определенных условиях транспортирование и использование газов. ,При наличии диоксида углерода, сероводорода и меркаптанов создаются условия для возникновения коррозии металлов, эти соединения снижают эффективность каталитических процессов и отравляют катализаторы. Сероводород, меркаптаны, серооксид углерода — высокотоксичные вещества. Повышенное содержание в газах диоксида углерода нежелательно, а иногда недопустимо еще и потому, что в этом случае уменьшается теплота сгорания газообразного топлива, снижается эффективность использования магистральных газопроводов из-за повышенного содержания в газе балласта. Если рассматривать этот вопрос с указанных позиций, то серо- и кислородсодержащие соединения можно отнести к разряду нежелательных компонентов. Однако такая постановка вопроса не исчерпывает всей полноты проблемы, так как кислые газы являются в частности высокоэффективным сырьем для производства серы и серной кислоты. Поэтому при выборе процессов очистки газов учитывают возможности достижения заданной глубины извлечения «нежелательных» компонентов и использования их для производства соответствующих товарных продуктов. В Канаде, например, сера в зависимости от содержания в газе сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы, а также регламентируются условия разработки и эксплуатации некоторых месторождений [22]. Известны случаи, когда сероводородсодержащий природный таз добывают с целью производства серы, очищенный газ после извлечения сероводорода закачивают обратно в пласт для поддержания пластового давления. В ряде стран мира (США, Канаде, Франции) открытие крупных месторождений природного сероводородсодержащего газа положило начало широкому развитию в 50-х годах добычи и очистки такого газа и производству серы из этого сырья. В Канаде из сероводородсодержащего газа получено около 5,3 млн. т серы (по состоянию на начало 1978 г. доказанные запасы серы составляли 105 млн. т) [23]. Разработаны и применяются процессы селективного извлечения сероводорода, при котором H2S вступает в реакцию с растворителем и окисляется до серы кислородом воздуха в процессе регенерации растворителя (в этом случае в составе комплекса нет установок Клауса). По первому варианту, экономически выгодно очищать газ при большом парциальном давлении сероводорода на входе на установку, по второму варианту — при низком парциальном давлении. Все процессы, приведенные выше, за исключением процессов Ветрококк — H2S * и Стретфорд, основаны на химической или физической абсорбции «нежелательных» серо-кислородсодержащих соединений и последующей десорбции их из абсорбента и направлении кислых сероводородсодержащих газов на установку по производству серы типа Клауса. Процессы Ветрококк — H2S и Стретфорд основаны на абсорбции сероводорода химическим растворителем и окислении его в регенераторе до серы за счет присутствия в абсорбенте соответствующих активных добавок и кислорода, который поступает в нижнюю часть регенератора вместе с воздухом (СО2 в процессе Стретфорд практически не извлекается, его присутствие осложняет процесс). Процессы Ветрококк — H2S и Стретфорд чаще всего применяют для очистки газов с низким содержанием сероводорода, область применения их ограничивается парциальным давлением H2S в очищенном газе до 0,002 МПа и в исходном газе до 0,07 МПа [26] (температура абсорбции 35—45 °С, в результате очистки обеспечивается высокая степень извлечения сероводорода). В СССР окислительно-восстановительные процессы Ветрококк — H2S и Стретфорд не нашли пока практического применения для очистки природных и нефтяных (попутных) газов от сероводорода. За рубежом эти процессы используют, как правило, на установках небольшой мощности. В США процесс Ветрококк не применяют из-за высокой токсичности растворителя [26]. В зависимости от состава и количества газа для обеспечения избирательного извлечения сероводорода в поток газа перед смесителем можно подавать весь объем регенерированного раствора или только часть его. Глубина очистки может быть охарактеризована степенью извлечения сероводорода, которая составляет при мышьяково-содовом методе 90-98%, при этаноламиновом - 99%, при трикалийфосфатном - 85-90%, при использовании активного угля - 98%. Обработка газов растворами этаноламннов, поташа, щелочи позволяет одновременно удалить двуокись углерода. Кроме тою, для грубой очистки от двуокиси углерода применяется водная промывка [99]. тивного извлечения сероводорода из газов, содержащих двуокись 20% не оказывает существенного рлияния на процесс извлечения сероводорода. Интеграла столкновений Интегрированием уравнения Интенсивные исследования Интенсивной деформации Интенсивное образование Интенсивное выделение Интенсивном механическом |
- |