Главная --> Справочник терминов


Капиллярная вискозиметрия Указанное явление объясняется тем, что в первое время, когда на поверхности металла имеются продукты коррозии рыхлой структуры, внешние факторы — относительная влажность, температура воздуха и количество осадков — оказывают значительное влияние на скорость коррозии. ^При этом капиллярная конденсация влаги и доступ кислорода к поверхности легко осуществляются, а это увеличивает скорость протекания коррозионного процесса.

Капиллярная конденсация 50, 51 Капилляры стеклянные 119,

Сорбция паров является результатом взаимодействия сорбента и сорбата, а капиллярная конденсация — это процесс взаимодей-сгшя молекул сорбата друг с другом, вызванный, понижением давления пара сорбата над погнутым мениском в капилляре.

Активированным углем называется уголь с высокой адсорбционной способностью. Это пористый адсорбент, скелет которого состоит из сеток шестичленных углеродных колец, менее упорядоченных, чем в графите, и ковалентно связанных с углеродными радикалами, водородом, а иногда и с кислородом. Активированные угли хорошо адсорбируют углеводороды и их производные, хуже—аммиак, низшие спирты и особенно плохо воду. Активированные угли обладают неоднородной поверхностью и высокой пористостью. У активированных углей имеются микропоры размером 1—2 нм с сильноразвитой удельной поверхностью (до 100 м2[г), поры размером 5—50 нм с поверхностью 100 м^{г и макропоры размером более 100 нм и малой удельной поверхностью 1 м2[г. Макропоры служат как бы транспортными каналами, подводящими молекулы адсорбируемого вещества к внутренним частям зерен активированного угля; в порах средних размеров (5—50 нм) происходит адсорбция групп молекул (полимолекулярная адсорбция) и капиллярная конденсация паров и, наконец, наиболее сильная адсорбция идет в микропорах.

Следует сделать еще несколько общих замечаний. Помимо макропор, в полимерном теле присутствуют, как это было отмечено выше, микропоры, размер которых соизмерим с размерами молекул сорбата. Естественно, что в этом случае молекулы сорбата не могут проникать в такие микропоры (считается, что для проникновения молекул сорбата в поры, объем последних должен в несколько раз превышать объем проникающих молекул). Поскольку молекулы сорбата могут быть различны, т.е. могут иметь разные размеры, то параметры пористой структуры, определяемые из сорбционных данных, будут зависеть от типов и размеров молекул сорбирующихся веществ. Поэтому введены такие термины, как "пористость по азоту", "пористость по бензолу" и т.д. Интересно, что сорбционный метод определения пористой структуры полимерных тел не может применяться в том случае, когда тело содержит достаточно крупные макропоры. Это связано с тем, что в условиях полимолекулярной адсорбции, когда происходит образование многих молекулярных слоев на стенках макропор, их слияние становится затруднительным, то есть капиллярная конденсация отсутствует. Тогда суммарный объем пор, рассчитанный по количеству проникшего в полимерное тело сорбата, будет меньше истинного объема макропор.

Капиллярная конденсация 50, 51

Поверхность материала древесины гидрофильна, а поперечные размеры ее пустот меньше капиллярной постоянной воды (3,8 мм при 20°С). Капиллярная постоянная жидкости характеризует линейный размер, при котором и меньше которого становятся существенными капиллярные явления. Следовательно, при контакте древесины с водой должны наблюдаться капиллярные явления (капиллярная пропитка, капиллярная конденсация и др.), играющие важную роль не только в жизни дерева, но и в процессах переработки древесины.

У полимерных сорбентов под адсорбцией понимают поглощение на поверхности раздела фаз, а под абсорбцией -растворение поглощаемого низкомолекулярного вещества в полимере с образованием твердого раствора, причем при абсорбции полимер обычно набухает. Процессы абсорбции у полимеров преобладают над процессами адсорбции. Однако при сорбции у пористых полимеров оба процесса происходят одновременно и практически их невозможно разграничить. Кроме того, в порах полимерного сорбента возможна капиллярная конденсация, накладывающаяся на процессы адсорбции и абсорбции. При сорбции полярными полимерами полярных низкомолекулярных веществ сорбент взаимодействует с молекулами сорбата с образованием межмолекулярных связей, в том числе водородных. Изотермы сорбции при этом приобретают характерную S-образную форму. Вначале происходит интенсивное связывание молекул сорбата, затем после насыщения полярных функциональных групп сорбента наблюдается более медленное поглощение, а у пористых сорбентов вследствие капиллярной конденсации интенсивность поглощения сорбата затем снова возрастает.

Четких границ между зонами нет. Образование полимолекулярного слоя воды может начаться до окончания формирования монослоя, а капиллярная конденсация уже начинается при меньшей (ниже 90%) относительной влажности воздуха. При приближении относительной влажности воздуха к 100% древесина достигает предела гигроскопичности (абсолютная влажность 25...30%). При сорбции паров воды целлюлозой, выделенной из древесины, границы между зонами изотермы сорбции будут зависеть от предыстории образца, его надмолекулярной структуры. В соответствии с различием механизмов поглощения древесиной паров воды из воздуха всю гигроскопическую влагу подразделяют на два вида: сорбционную воду, связанную водородными связями, и капиллярно-конденсированную. Свободная вода поглощается за счет капиллярных сил (поверхностного натяжения).

Препараты лигнина проявляют сорбционные свойства по отношению к парам, жидкостям и растворенным веществам, что свидетельствует о развитой внутренней поверхности и наличии специфических взаимодействий между лигнином и растворенными веществами. Лигнины проявляют гигроскопические свойства, причем некоторые препараты лигнина поглощают столько же паров воды, сколько и целлюлоза. Это может быть объяснено более развитой внутренней поверхностью данных образцов. Общий объем пор и удельная поверхность некоторых препаратов лигнина в несколько раз выше, чем у целлюлозы. Изотермы сорбции паров воды указывают на разный характер капиллярно-пористой структуры лигнинов, выделенных из древесины растворением углеводов, и лигнинов, выделенных растворением с последующим осаждением из раствора. У первых значительную роль в поглощении паров воды играет капиллярная конденсация, и они сорбируют больше воды, чем вторые, у которых капиллярная конденсация проявляется слабо. При относительной влажности воздуха 60% равновесная влажность лигнинов может составлять 3... 8%.

2. Даже совершенно чистые поверхности соприкасающихся твердых или упруговязких тел могут содержать адсорбированные частицы масел или влагу, сконденсировавшуюся из атмосферы в тонких трещинах и порах (капиллярная конденсация). В зонах соприкосновения двух микровыступов образуется мениск, и возникает отрицательное давление, или сцепление.

Капиллярная вискозиметрия

Схема капиллярного вискозиметра приведена на рис. 6.1. Особое внимание обычно уделяют обеспечению однородного поля температур и исключению потерь на трение между плунжером и цилиндром. Эксперименты проводят либо в режиме постоянного давления, либо в режиме постоянного расхода. При очень малых значениях расхода нельзя пренебрегать действующими на вытекающий экструдат силами поверхностного натяжения, силами тяжести и трением между поршнем и цилиндром. Поэтому при малых расходах значения вязкости оказываются завышенными. Капиллярная вискозиметрия позволяет определять вязкость до скоростей сдвига, при которых начинается дробление расплава (см. разд. 13.2). При высоких скоростях сдвига дополнительные осложнения возникают из-за интенсивного диссипативного разогрева (см. разд. 13.1).

9.2.1. Капиллярная вискозиметрия для измерения вязкости

9.2.1. Капиллярная вискозиметрия для измерения вязкости расплавов полимеров. 142

16.2. Капиллярная вискозиметрия

16.2.Капиллярная вискозиметрия 447

капиллярная вискозиметрия — продавлива-ние испытуемого материала через калиброванное отверстие малого диаметра при постоянном перепаде давления и измерение скорости течения материала;

Капиллярная вискозиметрия. Этот^метод заключается в продав-ливании испытуемого материала через калиброванное отверстие малого диаметра в условиях постоянного (варьируемого) перепада давления и измерении скорости течения. Метод моделирует условия переработки при экструзии эластомеров.

9.2.1. Капиллярная вискозиметрия для измерения вязкости

9.2.1. Капиллярная вискозиметрия для измерения вязкости расплавов полимеров. 142

Наиболее распространенным методом исследования реологических свойств расплавов ПВХ композиций является капиллярная вискозиметрия [22]. В настоящее время капиллярная вискозиметрия представляет собой весьма развитую область, охватывающую десятки приборов научного и промышленного назначения и большое число стандартизованных методов измерения показателей вязкостных свойств. Наиболее полно методология измерений и устройство основных типов приборов рассмотрены в [52].

Кроме показателя текучести расплава капиллярная вискозиметрия позволяет оценить и реологические характеристики расплава, а также энергию активации вязкого течения (UR).




Ксантогенат целлюлозы Кварцевым наполнителем Квазихрупком состоянии Кусочками добавляют Катализатора определяется Катализатора получение Кажущееся противоречие Катализатора применяли Катализатора проводится

-