Главная --> Справочник терминов


Капиллярной контракции Адсорбцией называется любой процесс, в котором молекулы удерживаются на поверхности твердого тела с помощью поверхностных сил. Различают два класса адсорбентов: адсорбенты, активность которых обусловлена действием поверхностных сил и капиллярной конденсации (физическая адсорбция), и адсорбенты, которые реагируют химически (хемосорбция). Вторая группа адсорбентов имеет ограниченное применение в процессах переработки природных газов и поэтому здесь не рассматривается.

Для очистки водорода употребляются адсорбенты, поглощающие окись и двуокись углерода, водяные пары, углеводороды, сероводород, органические сернистые соединения [8]. Такая избирательная адсорбция основана на образовании поверхностных химических соединений или на капиллярной конденсации. Наибольшее значение для очистки водорода имеет адсорбция на цеолитах, размер пор которых соизмерим с размерами молекул. Через поры проходят, не задерживаясь, только молекулы, имеющие размер меньше размера пор цеолита; более крупные молекулы остаются на их поверхности. Водород по сравнению с другими газами имеет наименьший размер молекул и на цеолитах не задерживается. На поглощение вещества цеолитом еще большее влияние, чем размер, может иметь форма молекулы, ненасыщенный характер молекул.

Особенности процесса растворения полимеров. Первой стадией растворения любого полимера является его набухание. Набухание— это процесс поглощения полимером низкомолекулярной жидкости, сопровождающийся увеличением объема полимера и изменением конформаций его макромолекул. Большие молекулы полимера характеризуются низкими значениями коэффициентов диффузии. Поэтому смешение осуществляется медленно, и его промежуточные стадии легко фиксируются. При этом благодаря способности макромолекул изменять свою форму растворитель на промежуточных стадиях растворения не только заполняет пустоты между отдельными звеньями (процесс, аналогичный капиллярной конденсации в твердых пористых телах), но и увеличивает эффективные радиусы полимерных клубков и расстояния между их центрами масс, не нарушая при этом сплошности полимерного тела. Последнее приводит к значительному увеличению объема полимерной фазы по сравнению с исходным. Набухший полимер фактически представляет собой раствор низкомолекулярной жидкости в полимере.

-ограничивает объем капиллярной конденсации и доступ килорода к поверхности металла, дальше идет стабилизация коррозионного процесса.

поверхности, так называемое явление капиллярной конденсации. В связи с этим изотерма адсорбции довольно резко поднимается вверх.

Обычно о характеристиках микропористой структуры судят по экспериментальным данным о равновесной адсорбции, капиллярной конденсации паров и вдавливании ртути (ртутная порометрия) [121]. В последнее время находит применение метод аннигиляции позитронов [3,48, ПО, 123,134, 140, 155, 164, 187, 211], с помощью которого можно определять характеристики микропористой структуры, когда размер пор соизмерим с молекулярными размерами. Такие микропоры недоступны для проникновения молекул сорбата, и тем более, они недоступны проникновению ртути при использовании метода ртутной порометрии.

-ИК-спектроскопии 473 -калориметрический 107,110 -капиллярной конденсации 55 -локального поля Л орвнтца 230 -малоуглового рентгеновского рассеяния 334 -наименьших квадратов 127 -нейтронного рассеяния 334 -обратного переменного шага 320 -оптический 107 -пикнометрический 58 -планирования эксперимента 457 -поликонденсации 58 -полимеризации в растворе 58 -поляризационно-оптический 247 -регистрации спектров времен жизни позитронов 64 -рентгеновской фотоэлектронной спектроскопии 286 -ртутной порометрин 55 -Рунге-Кутта, численный 302 -Сим пеона 320

поверхности, так называемое явление капиллярной конденсации. В связи

• Тонкослойная гельпроникающая хроматография (ТСГПХ) основана на молекулярно-ситовом эффекте, который может наблюдаться при двух условиях: подавлении адсорбционной активности адсорбента и заполнении его пор растворителем. Размер пор определяется степенью сшивания макромолекул в геле. Заполнение пор может быть достигнуто с помощью так называемой преэлюции - пропускания растворителя по пластинке перед нанесением пробы либо капиллярной конденсации при предварительном насьшдении пластинки парами растворителя. Гель-фильтрация применяется для определения молекулярных масс разделенных компонентов, исследования ферментов, красителей, белков, ММР фракций полимеров.

У полимерных сорбентов под адсорбцией понимают поглощение на поверхности раздела фаз, а под абсорбцией -растворение поглощаемого низкомолекулярного вещества в полимере с образованием твердого раствора, причем при абсорбции полимер обычно набухает. Процессы абсорбции у полимеров преобладают над процессами адсорбции. Однако при сорбции у пористых полимеров оба процесса происходят одновременно и практически их невозможно разграничить. Кроме того, в порах полимерного сорбента возможна капиллярная конденсация, накладывающаяся на процессы адсорбции и абсорбции. При сорбции полярными полимерами полярных низкомолекулярных веществ сорбент взаимодействует с молекулами сорбата с образованием межмолекулярных связей, в том числе водородных. Изотермы сорбции при этом приобретают характерную S-образную форму. Вначале происходит интенсивное связывание молекул сорбата, затем после насыщения полярных функциональных групп сорбента наблюдается более медленное поглощение, а у пористых сорбентов вследствие капиллярной конденсации интенсивность поглощения сорбата затем снова возрастает.

Дальнейший рост относительной влажности воздуха вызывает резкое увеличение поглощения воды преимущественно вследствие капиллярной конденсации (IV). В капиллярах древесины образуется жидкая вода в результате конденсации ее паров, обусловленной капиллярным понижением упругости пара по сравнению с окружающим воздухом, поскольку давление пара в капилляре с вогнутым мениском жидкости всегда ниже, чем над плоской поверхностью. Чем меньше диаметр капилляра, тем больше капиллярное понижение упругости паров воды. Вода, поглощенная в результате капиллярной конденсации, образует подвижный слой на поверхности капилляра и отличается от иммобилизованной воды, поглощенной в результате полимолекулярной адсорбции на предыдущей стадии процесса.

сти капилляр сжимается, уменьшение радиуса кривизны приводит к повышению капиллярного давления, а последнее — к новому уменьшению радиуса; этот процесс может привести к полному закрытию капилляра. Поэтому при испарении жидкости из капиллярно-пористых тел последние обычно уменьшаются в объеме. Это явление капиллярной контракции подробно изучено М. С. Остриковым с сотрудниками на примере многих пористых материалов и дисперсных структур [57].

При ацеталировании поливинилового спирта формальдегидом в водном растворе (в присутствии кислоты в качестве катализатора) поливиниловый спирт превращается в нерастворимый поливинилформаль (сохраняющий некоторое число незамещенных гидроксильных групп). Из полученного пересыщенного раствора образуется микрогетерогенная конденсационная структура, состоящая из сросшихся глобул по-ливинилформаля. В водной среде она представляет собой белый, непрозрачный, пористый, эластичный материал. Есл-и ее тщательно отмыть от избытка кислоты и формальдегида и высушить, то в результате капиллярной контракции она теряет пористость и проницаемость,

При достижении некоторой критической степени ацеталирования по-ливинилформаль теряет растворимость. Из (образовавшегося пересыщенного раствора выделяются частицы новой фазы. Они срастаются в ажурную пространственную сетку. Возникает конденсационная структура (первого рода). Свежеприготовленные конденсационные структуры поливинилформаля, как показали Г.М. Синицына с соавт. [10] и М. С. Ос-триков с соавт. [11], оказываются неустойчивыми к силам капиллярной контракции. После отмывки от кислоты и избытка альдегида они сохраняют пористость только в увлажненном состоянии. При высушивании они полностью теряют пористость, образуя газо- и паронепроницаемый материал. Силы капиллярной контракции, развивающиеся в области микроменисков испаряющейся влаги, приводят к тесному сближению структурных элементов. При окончательном высыхании, по-видимому, остаточные гидроксильные группы частично ацеталированного поливинилформаля образуют между собой водородные связи, которые как бы «зашивают» все поры конденсационной структуры. Как показал Г. М. Плавник с соавторами [12] методом малоуглового рассеяния рентгеновских лучей, в таких «зашитых» криптоконденсационных структурах сохраняется лишь небольшое количество очень мелких пор радиусом около 20 А. В полученной стеклообразной, почти прозрачной массе непористого полимера «память» об исходной пористой конденсационной структуре хранится лишь в виде системы сложным образом распреде-

Так же как натуральная кожа приобретает устойчивость к силам капиллярной контракции при дублении, конденсационные структуры поливинилформаля делаются устойчивыми после дополнительной обработки их формальдегидом или некоторыми другими веществами, играющими роль дубителей [10]. При высушивании такие структуры сохраняют пористость; они обладают высокой проницаемостью для водяных паров. Это изменение свойств является результатом дополнительной гидрофо-бизации полимера [13], а также связанного с ней изменения механических свойств структуры. Повышение степени ацеталирования, возможно, сопровождается также частичным сшиванием макромолекул ацеталь-ными мостиками с образованием трехмерного полимера.

На основании полученных данных можно утверждать, что силы капиллярной контракции, развивающиеся при высушивании этой, все еще весьма гидрофильной, конденсационной структуры, приводят к почти полному исчезновению пористости. Структурные элементы, сблизившиеся под действием отступающих микроменисков влаги, «сшиваются» друг с другом водородными связями, образуемыми остаточными гидрок-сильными группами полимера. Полученный материал можно назвать «криптогетерогенной», или «криптоконденсационной» системой. «Память» о том, что полимер обладал в набухшем состоянии микрогетерогенной конденсационной структурой, сохраняется лишь в виде системы сложным образом распределенных внутренних напряжений. Сохранившиеся мелкие неоднородности радиусом около 20 А, возможно, представляют собой дефекты упаковки макромолекул. Характер этих неоднородностей не может быть окончательно установлен без дополнительных исследований.

Образцы, подвергавшиеся более длительному дополнительному аце-талированию, приобретают некоторую устойчивость к силам капиллярной контракции ;и после высушивания в той или иной 'степени сохраняют пористость. Интенсивность рассеяния рентгеновских лучей этими образцами возрастает особенно значительно при наименьших углах, что свидетельствует о наличии более крупных пор. Так, кривая 2 (продолжительность ацеталирования — 17 часов) довольно четко делится на два участка: один из них (в области больших углов) вполне аналогичен кривой / и соответствует тем же мелким неоднородностям, которые характерны для чистых криптоконденсационных систем. Другой участок этой кривой, в логарифмических координатах на всем своем протяжении почти строго линейный, соответствует определенному распределению пор по размерам, включающему и довольно крупные поры. Таким образом, этот образец уже выявляет признаки существования устойчивой пористости; вообще же по своим свойствам он еще очень близок к крип-токонденсационной структуре.

При анализе этих результатов следует иметь в виду, что все поры, обнаруженные в образцах, подвергнутых длительному ацеталированию, сформировались уже на ранних стадиях процесса, но при малой продолжительности ацеталирования они неустойчивы к силам капиллярной контракции и при высушивании исчезают.

Как видно из рис. 3, увеличение продолжительности ацеталирования с 6 до 120 часов приводит к увеличению общего объема субмикропор, выявляемых малоугловым рассеянием, примерно на два порядка. В первую очередь при этом увеличивается объем, занимаемый наиболее крупными порами. Это вполне естественно, так как наиболее крупные поры испытывают при высушивании действие меньших сил капиллярной контракции и для придания им устойчивости к действию этих сил требуется меньшая степень модифицирования.

3. Увеличение продолжительности дополнительного ацеталирования приводит к повышению устойчивости конденсационных структур к силам капиллярной контракции, в результате чего у воздушно-сухих образцов сохраняется развитая полидисперсная пористость в области радиусов пор 20—500 А. В первую очередь устойчивость приобретают наиболее крупные поры ;из числа доступных для изучения данным методом.

Из этих и других факторов, определяющих прочность структуры, главными все же являются физико-химические межмолекулярные структурирующие связи и их изменения под влиянием среды. В этом смысле принцип, сформулированный академиком П. А. Ребиндером относительно влияния смачивающих жидкостей на прочность твердых тел, имеет самое широкое значение и в полной мере относится к процессам, происходящим при высыхании, когда механическое действие поверхностных сил с изменением геометрических условий приобретает обратное направление, вызывая закономерный рост прочности тела. Действительно, в этих условиях силы капиллярной контракции [2], развивающиеся при высыхании, уплотняют структуру, сближая ее элементы и обеспечивая таким образом возможность возникновения многочисленных вторичных когезионных и адгезионных упрочняющих связей.

На 'рис. 1 (I А) схематично показано разрушительное действие проникающей в тупик трещины воды при увлажнении твердого тела и сжимающее действие сил капиллярной контракции (I Б, а) при высыхании. Эти схемы, а также графики II А и Б [21] показывают взаимосвязи и возможности переходов к противоположному механическому действию молекулярных поверхностных сил, когда увлажнение сменяется сушкой, или наоборот.




Квадратный сантиметр Катализатора межфазного Кулярного взаимодействия Катализатора необходимо Катализатора осуществляется Катализатора поскольку Катализатора приготовление Катализатора применять Катализатора реагирует

-
Яндекс.Метрика