Главная --> Справочник терминов


Когезионная прочность Многие исследователи считают, что структура полимера в растворе и блоке близка к модели хаотически переплетенных цепей и только при кристаллизации образуются упорядоченные области в виде кристаллитов. Этим объясняется, что структура полимеров в кристаллическом состоянии изучена лучше. Кроме того, прямые структурные методы (рентгенографические, электронно-графические и др.) дают наилучшие результаты при исследовании области когерентного рассеяния, т. е. для кристаллических структур с дальним порядком в расположении атомов, атомных групп и цепей.

объяснения когерентного рассеяния нейтроны надо рассматривать как волны.

В чистых металлах и ряде сплавов интенсивные деформации обеспечивают часто формирование ультрамелкозернистых структур с размером зерен 100-200 нм, а иногда и более [3]. Однако сформировавшиеся зерна (фрагменты) имеют специфическую субструктуру, связанную с присутствием решеточных и зерногранич-ных дислокаций и дисклинаций, наличием больших упругих искажений кристаллической решетки, вследствие чего области когерентного рассеяния, измеренные рентгеновскими методами обычно составляют значительно менее 100 нм [12, 3], что и определяет формирование наноструктурных состояний в ИПД материалах.

Весьма важная информация об эволюции структуры в процессе интенсивной деформации может быть получена методом РСА. Этот метод позволяет получать статистически надежную информацию о параметре решетки, фазовом составе, размере зерен-кристаллитов (областей когерентного рассеяния — ОКР), микроискажениях решетки, статических и динамических атомных смещениях, кристаллографической текатуре и т. д. [79-82].

При анализе формы профиля рентгеновских пиков следует иметь в виду, что логнормальный закон распределения зерен или кристаллитов малого размера (областей когерентного рассеяния) по размеру приводит к лоренцевой форме профиля рентгеновских пиков [83-86]. Дислокации, хаотично распределенные в теле зерен, приводят к гауссовой форме профиля.

Выделим возможные причины, приводящие к обнаруженной разнице в размере зерен, определенном рентгеновским и электронно-микроскопическим методами. Во-первых, каждое зерно в зависимости от его размера может состоять из одного или нескольких кристаллитов (ОКР). Во-вторых, метод РСА, основанный на измерении интегрального уширения профилей рентгеновских пиков, позволяет определять размер областей когерентного рассеяния, соответствующих внутренней области зерен, не включающей в себя приграничные сильно искаженные районы, существующие в нано-структурных материалах, полученных ИПД. Ширина таких районов составляет 6-10 нм (см. §2.2). Их наличие приводит к уменьшению размера ОКР и, следовательно, к уменьшению измеряемого размера зерен.

объяснения когерентного рассеяния нейтроны надо рассматривать как волны.

Наиболее чистая ситуация может быть достигнута путем дейте-рирования в экспериментах по рассеянию нейтронов. К счастью, дейтерий и водород очень сильно различаются по амплитуде когерентного рассеяния тепловых нейтронов. Таким образом, можно осуществить изотопное мечение, эффективное для нейтронного рассеяния, но оставляющее систему близкой к невозмущенной2*.

Исследование кристаллических полимеров при температурах выше и ниже температур плавления их кристаллов было проведено нами совместно с А. В. Ермолиной на примере терилена и политрифторхлорэтилена. В этом исследовании электронографическим методом было показано, что интерференционные картины, полученные от образцов при температурах выше и ниже температур плавления их кристаллов, имеют между собой много общего. Совпадение основных максимумов на кривых распределения интенсивности когерентного рассеяния по углам для обоих полимеров дает возможность считать, что исследованные нами полимеры и в аморфном состоянии являются упорядоченными системами. Действительно, при построении кривых радиального распределения нами было обнаружено, что первые максимумы на кривых соответствуют расстояниям между атомами в молекуле полимера и являются следствием регулярного строения цепных молекул. Последние максимумы для обоих исследуемых полимеров соответствовали взаимному расположению молекул полимера (рис. 1).

единой области когерентного рассеяния. Факт уширения большеугловых рефлексов в рентгенограммах блочных полимеров или матов до недавнего времени рассматривали как неоспоримое доказательство микрокристаллического строения полимеров. Была разработана детальная теория анализа рентгеновских рефлексов, позволяющая определить не только размеры микрокристаллических блоков (кристаллитов), но и характер нарушений их кристаллической структуры. К выводам относительно микрокристаллического (мозаичного) строения полимеров приходят на основании ЭД данных от единичных кристаллов ПЭ (Ort, см. [47]) и ПП [48], а также ЭМ наблюдения муаровых картин (Hosemann, см. [47]). По модели, предложенной для объяснения результатов ЭМ и ЭД исследований, единичные кристаллы состоят из отдельных блоков с боковыми размерами ~300 А, наклоненных друг относительно друга на углы от 0,6° до 11°.

С точки зрения авторов работы [49], наблюдаемые уширения рефлексов (размер «кажущихся» блоков мозаики) определяется не блочностью монокристаллических ламелей, а обусловлены геометрическими эффектами. Последние связаны с пирамидальной формой монокристаллов и с расположением плоскостей (110) под углом 26° к нормали к складчатой поверхности ламели в ПЭ и плоскостей (1010) под углом 2° в ПОМ. Это дает «эффективную» область когерентного рассеяния до 300—400 в ПЭ и 2500 А в ПОМ (рис. I. 10) — именно такие размеры и были получены из рентгеновского анализа монокристаллов

Все углеводородные каучуки отличаются небольшой собственной энергией когезии, а также малой энергией взаимодействия с сажей. Поэтому когезионная прочность сажевых смесей на основе таких каучуков в отсутствие процессов кристаллизации также мала.

Важную роль в процессах усиления невулканизованных резиновых смесей за счет кристаллообразования играют факторы, обуславливающие появление начального ориентационного эффекта, после чего процесс кристаллизации развивается лавинообразно; появление такого эффекта при растяжении связано с образованием стабильных связей каучук — каучук или сажа — каучук [6]. Увеличение молекулярной массы и введение полярных групп в полимерные цепи, находящиеся в сажекаучуковой матрице, увеличивают количество связей и ускоряют развитие процесса кристаллизации именно за счет создания ориентационного эффекта; соответственно, увеличивается когезионная прочность^ смесей. Это положение иллюстрируется данными, приведенными на рис. 3, где представлены кривые напряжение — деформация для 3-х смесей, полученных на основе одного и того же каучука — полиизопрена с высоким содержанием г{ис-1,4-звеньев, но приготовленных различным способом: на вальцах; в условиях, обеспечивающих отсутствие процессов механохимической деструкции; наконец, на вальцах в присутствии модификатора (промотора), усиливающего взаимодействие сажа — каучук.

Высокая когезионная прочность резиновых смесей НК обусловлена регулярным строением полимерных цепей и заметным содержанием — до 3%(мол.)—в макромолекулах НК полярных протеиновых групп; в то же время депротеинизированный (без изменения молекулярной массы) НК дает смеси с явно пониженной когезионной прочностью (кривая 4, рис. 2).

Недостатком всех видов СКИ, затрудняющим их применение в шинной промышленности, является пониженная прочность сырых резиновых смесей на их основе по сравнению со смесями из НК (когезионная прочность). Преимущество последних в этом отношении объясняется большим совершенством микроструктуры НК, что способствует более быстрой его кристаллизации при малых деформациях, и присутствием в НК полярных соединений. Наряду с этим существенное значение имеют различия в молекулярном составе НК и СКИ (отсутствие в НК низкомолекулярных фракций).

В настоящее время имеется уже достаточно материала для обсуждения этих вопросов. Исследования, проведенные во ВНИИСК [14, с. 33—71; 15], позволили оценить влияние молекулярной массы и молекулярно-массового распределения каучука СКИ-3 на когезионную прочность его сажевых смесей. Было показано, что когезионная прочность невулканизованных сажевых смесей типа брекерной изменяется от 0,05—0,06 до 0,3 МПа при изменении вязкости по Муни каучука СКИ-3 от 40 до 110. Аналогичную закономерность повышения когезионной прочности (до 0,5 МПа) с увеличением молекулярной массы наблюдали и у каучука СКИЛ (полиизопрен, полученный с литиевым катализатором) [16]. В то же время смеси на основе глубоко деструктирован-ного вальцеванием НК [вязкость по Муни (Б-1-4-100) меньше 40] обладают достаточно высокой когезионной прочностью — около 1,0 МПа.

Все же основная задача модификации диеновых полимеров — исследование путей синтеза эластомеров, прежде всего на основе полиизопрена, ни по одному из важнейших свойств (когезионная прочность, адгезия, эластичность, сопротивление раздиру и др.) не уступающих натуральному каучуку, а напротив, по некоторым из них превосходящих его, и выбор оптимального среди таких методов для промышленной реализации.

Резиновые смеси на основе ТПА, как и в случае НК, вследствие кристаллизации самоусиливаются при растяжении. Прочность невулканизованных резиновых смесей с 50 ч. (масс.) сажи может достигать 8—10 МПа, ас 75 ч. (масс.) сажи и 45 ч. (масс.) ароматического масла 1,5—2,0 МПа [38]. Когезионная прочность смесей кроме степени наполнения определяется молекулярной массой полимера и регулярностью построения его цепи (рис. 2,3).

Возможность последнего пути была экспериментально продемонстрирована в работе [9]. Под влиянием ингредиентов резиновой смеси в процессе вулканизации может происходить падение содержания транс- 1,5-звеньев на 8—12%. Этот путь представляется весьма заманчивым, так как позволяет, с одной стороны, реализовать все преимущества кристаллизующегося полимера в резиновой смеси (когезионная прочность, клейкость и т» д.), а с другой стороны, получать относительно устойчивые к действию низких температур резины.

Прекрасные технологические свойства и способность к высокому наполнению, когезионная прочность и клейкость резиновых смесей, 'хорошие физико-механические показатели и износостой-

когезионная прочность резиновых смесей 75

когезионная прочность резиновых смесей 74




Количества образовавшихся Количества основания Карбонильных заместителей Количества поглощенной Количества примечание Количества радикалов Карбонильными соединениями Количества регулятора Количества соответствующего

-