Главная --> Справочник терминов


Конденсационных полимеров Среди необратимо разрушающихся структур особое значение имеют структуры, получаемые конденсационным методом, т. е. возникающие в процессе образования новой фазы из метастабильных систем — пересыщенных паров, растворов и расплавов. Возникновение и рост зародышей новой фазы в условиях, когда еще сохраняется значительная степень пересыщения, создают возможность образования прочного сетчатого каркаса путем срастания и переплетения растущих частиц. В том случае, когда эти частицы представляют собой кристаллики, возникающие конденсационные структуры принято называть кристаллизационными.

Аморфные конденсационные структуры могут быть получены из ме-тастабильных растворов высокомолекулярных соединений [47].

Конденсационные структуры поливинилформаля (рис. !!•) или аце-тилцеллюлозы (рис. 12) представляют собой системы, состоящие из сросшихся полимерных сферических частиц довольно большого размера (от 0,1 до 10 ж/с). Если абсолютная концентрация полимера в ис-

ходных метастабильных растворах невелика, то образуются отдельные флоккулы — агрегаты сросшихся частиц; при более высоких концентрациях возникают конденсационные структуры — пространственные сетки дисперсной фазы, заполняющие весь объем, который был занят исходным раствором.

То обстоятельство, что конденсационное структурообразование позволяет без применения механических операций, чисто физико-химическим путем получать тонкопористые материалы, представляет несомненный практический интерес. Этим методом изготовляются нитроцеллю-лозные [52] и ацетилцеллюлозные [53] мембранные фильтры, некоторые типы искусственной кожи, обладающие высокой паропроницаемостью [54, 55]. Многие распространенные сорбенты (силикагель, алюмосиликаты) также представляют собой типичные конденсационные структуры [56].

«Коагуляцией» можно называть только процессы агрегации коллоидных частиц, связанные с установлением между ними коагуляшюнных контактов. Коагуляции могут подвергаться коллоидные, но не истинные растворы. Можно говорить, например, о коагуляции латексов, но не о коагуляции истинных растворов высокомолекулярных соединений. Неправильное словоупотребление (например, «коагулирующая ванна» в технологии искусственных волокон) иногда допустимо в своеобразном техническом жаргоне, но неизбежно ведет к принципиальным ошибкам в применении таких терминов, как «порог коагуляции», к смешению понятий «коагуляционные структуры» и «конденсационные структуры» и т. д.

Другим общим методом получения тонкопористых высокомолекулярных пленок является метод конденсационного структурообразования [1]. Конденсационными структурами называют прочные пространственные сетки, образуемые сросшимися и переплетенными частицами новой твердой фазы, которые самопроизвольно выделяются из метастабильных (пересыщенных) растворов [2]. Такие пересыщенные растворы могут быть получены путем изменения температуры стабильных растворов, обогащения их нерастворителями в результате диффузионных процессов (например, частичного испарения растворителя). Конденсационные структуры находят применение при изготовлении так наз. мембранных фильтров [3], а также некоторых видов искусственной кожи [4].

При достижении некоторой критической степени ацеталирования по-ливинилформаль теряет растворимость. Из (образовавшегося пересыщенного раствора выделяются частицы новой фазы. Они срастаются в ажурную пространственную сетку. Возникает конденсационная структура (первого рода). Свежеприготовленные конденсационные структуры поливинилформаля, как показали Г.М. Синицына с соавт. [10] и М. С. Ос-триков с соавт. [11], оказываются неустойчивыми к силам капиллярной контракции. После отмывки от кислоты и избытка альдегида они сохраняют пористость только в увлажненном состоянии. При высушивании они полностью теряют пористость, образуя газо- и паронепроницаемый материал. Силы капиллярной контракции, развивающиеся в области микроменисков испаряющейся влаги, приводят к тесному сближению структурных элементов. При окончательном высыхании, по-видимому, остаточные гидроксильные группы частично ацеталированного поливинилформаля образуют между собой водородные связи, которые как бы «зашивают» все поры конденсационной структуры. Как показал Г. М. Плавник с соавторами [12] методом малоуглового рассеяния рентгеновских лучей, в таких «зашитых» криптоконденсационных структурах сохраняется лишь небольшое количество очень мелких пор радиусом около 20 А. В полученной стеклообразной, почти прозрачной массе непористого полимера «память» об исходной пористой конденсационной структуре хранится лишь в виде системы сложным образом распреде-

Так же как натуральная кожа приобретает устойчивость к силам капиллярной контракции при дублении, конденсационные структуры поливинилформаля делаются устойчивыми после дополнительной обработки их формальдегидом или некоторыми другими веществами, играющими роль дубителей [10]. При высушивании такие структуры сохраняют пористость; они обладают высокой проницаемостью для водяных паров. Это изменение свойств является результатом дополнительной гидрофо-бизации полимера [13], а также связанного с ней изменения механических свойств структуры. Повышение степени ацеталирования, возможно, сопровождается также частичным сшиванием макромолекул ацеталь-ными мостиками с образованием трехмерного полимера.

Изучению подверглись конденсационные структуры поливинилфор-маля, получаемые при ацеталировании поливинилового спирта формальдегидом в водных растворах [2].

Устойчивые к высушиванию конденсационные структуры, подвергнутые длительному дополнительному ацеталированию, также могут быть превращены в гомогенный, бесструктурный полимер. Для того чтобы сблизить элементы пористой структуры до установления контактов

К поликонденсационным процессам ранее относили реакции образования полимеров путем взаимодействия полифункциональных мономеров с выделением низкомолекулярных продуктов. Однако такое определение не охватывает все известные в настоящее время процессы данного типа. Так, образование типичных конденсационных полимеров — полиуретанов и полимочевин — из диизоцианатов и диолов или соответственно диаминов протекает без выделения низкомолекулярных продуктов. Более правильно при определении процесса поликонденсации учитывать особенности механизма образования полимера. Поэтому целесообразно рассматривать поликонденсацию как процесс получения высокомолекулярных соединений путем взаимодействия полифункциональных мономеров, протекающий по ступенчатому механизму.

МОЛЕКУЛЯРНО-МАССОВОЕ РАСПРЕДЕЛЕНИЕ (ММР) ПОЛИКОНДЕНСАЦИОННЫХ ПОЛИМЕРОВ

Высокомолекулярные соединения независимо от способа их получения характеризуются той или иной степенью полидисперсности по молекулярным массам. Общепринятым способом расчета молекулярно-массового распределения линейных поликонденсационных полимеров является статистический метод, предложенный Флори [20, 21], в основе которого лежит постулат о независимости реакционной способности макромолекул от их длины.

Отношение среднемассовой к среднечисленн'ой молекулярной массе является мерой полидисперсности полимера и для конденсационных полимеров обычно равно 2 (наиболее вероятное, или распределение Флори).

Величина молекулярной массы, определяемая по количеству концевых групп, зависит от числа молекул полимера и является среднечисловой молекулярной массой. Метод применяется для линейных конденсационных полимеров, которые содержат реакцион-носпособные функциональные концевые группы ОН, СООН, NHg и др. Так как реакционная способность таких функциональных групп не зависит от молекулярной массы полимера, то для их определения применяют обычные методы анализа функциональных групп. Концевые группы определяют химическими или физическими методами (калориметрическими, спектроскопическими, радиометрическими и др.). Этот метод определения молекулярных масс полимеров наиболее эффективен в пределах 103—105.

Синтез полимеров очень часто (даже, вероятно, чаще, чем синтез обычных органических соединений) проводится в запаянных ампулах. Ампулы применяются как для получения конденсационных полимеров в расплаве, так и для полимеризации винильных мономеров

Поэтому в данной главе будут рассмотрены методы синтеза конденсационных полимеров, получаемых как реакцией поликонденсаиии соединений с функциональными группами, так и реакцией миграционной полимеризации. Примером последней является уже упоминавшаяся реакция гликолей с диизоцнанатами.

возможности целенаправленного макромолекулярного дизайна конденсационных полимеров

конденсационных полимеров органического и элементоорганического типов со своеобразным

конденсационных полимеров.

макромолекулярного дизайна конденсационных полимеров и




Конденсационных полимеров Конденсата многоступенчатой Конденсатор холодильник Конденсат поступает Конденсат возвращается Каталитического дегидрирования Конденсированных полициклических Конденсирующими средствами Конечными продуктами

-
Яндекс.Метрика