Главная --> Справочник терминов


Материалов поскольку Уже в первых работах, выполненных Гляйтером с сотрудниками [1, 106], был установлен ряд особенностей структуры нано-кристаллических материалов, полученных газовой конденсацией атомных кластеров с последующим их компактированием. Это прежде всего пониженная плотность полученных нанокристаллов и присутствие специфической «зернограничной фазы», обнаруженное по появлению дополнительных пиков при мессбауэровских исследованиях. На основании проведенных экспериментов, включая компьютерное моделирование, была предложена структурная модель нанокристаллического материала, состоящего из атомов одного сорта (рис. 2.1) [1, 107]. В согласии с этой моделью такой нанокристалл состоит из двух структурных компонент: зерен-кристаллитов (атомы представлены светлыми кружками) и зер-нограничных областей (черные кружки). Атомная структура всех кристаллитов совершенна и определяется только их кристаллографической ориентацией. В то же время зернограничные области, где соединяются соседние кристаллиты, характеризуются пониженной атомной плотностью и измененными межатомными расстояниями.

В настоящей главе изложены основные результаты экспериментальных исследований, направленных на выяснение дефектной структуры как границ, так и тела зерен в наноструктурных материалах, полученных с использованием ИПД. Рассмотрена структурная модель этих наноматериалов, базирующаяся на представлениях о неравновесных границах зерен.

Электронно-микроскопические исследования. Уже в первых электронно-микроскопических исследованиях наноструктурных материалов, полученных ИПД, было обращено внимание на специфический вид границ зерен в сравнении с обычными отожженными материалами [8, 37]. Типичным примером такого дифракционного контраста является изображение микроструктуры сплава Al-4 %Cu-0,5 %Zr [8], имевшего после ИПД кручением средний размер зерен около 0,2 мкм (рис. 2.2а). Для сравнения рядом приведена микроструктура этого же образца, подвергнутого дополнительному отжигу при 160°С в течение 1ч (рис. 2.26). В обоих случаях наблюдалась структура зеренного типа, имеющая преимущественно болыпеугловые границы. Тем не менее вид толщинных контуров экстинкции на границах зерен на рис. 2.2о отличается от такового на рис. 2.26 значительным уширением.

Рассмотрим теперь результаты исследований наноструктурных ИПД материалов, полученных с использованием высокоразрешающей электронной микроскопии (ВРЭМ). Данный метод дает информацию лишь о локальных участках исследуемой структуры и для получения статистически надежной картины требуется изучение многих районов. Вместе с тем очевидным преимуществом этого метода является возможность детального исследования струк-

Рассмотренные выше данные свидетельствуют о том, что ИПД иводит к формированию наноструктур с сильноискаженной кри-эллической решеткой. В связи с этим можно ожидать существен-ix изменений в колебательном атомном спектре и термическом ведении наноструктурных материалов, полученных ИПД.

Таким образом, проведенные рентгеноструктурные исследования свидетельствуют о формировании в результате ИПД состояния, характеризующегося размером зерен-кристаллитов в десятки нанометров, высоким уровнем микроискажений, измененным параметром кристаллической решетки, повышенными атомными смещениями, пониженной температурой Дебая, несколько повышенным диффузным фоном рассеяния рентгеновских лучей. Все это свидетельствует о специфичности дефектной структуры нано-материалов, полученных с использованием интенсивных деформаций, что должно быть учтено при разработке структурной модели ИПД материалов (см. §2.3).

1. Сокращение размеров образцов, наблюдаемое при нагреве наноструктурных материалов, полученных ИПД, по-видимому, обусловлено изменениями структуры границ зерен, связанными с переходом неравновесных границ в равновесное состояние.

Суммируя приведенные выше результаты исследований, выполненных на чистых металлах (Си, Ni, Fe) и однофазных А1 сплавах, можно выделить ряд характерных особенностей дефектной структуры наноструктурных материалов, полученных ИПД. При этом отметим также, что просвечивающая электронная микроскопия, в том числе высокоразрешающая, рентгеноструктурный анализ и мессбауэровская спектроскопия являются взаимно дополняющими методами исследований, где первые (просвечивающая, включая высокоразрешающую, электронная микроскопия) дают локальную информацию, в частности об индивидуальных границах зерен, а вторые (рентгеноструктурный анализ и мессбауэ-рография) — усредненную информацию о структуре материалов. Вместе с тем результаты этих исследований не противоречат, а дополняют друг друга.

Общими для всех наноматериалов, полученных ИПД, являются высокие внутренние напряжения и искажения кристаллической решетки. Данные рентгеноструктурного анализа дают для исследованных материалов величину среднеквадратичных деформаций равную 10~3-10~4, хотя, согласно электронно-микроскопическим исследованиям, локальные упругие деформации, особенно у границ зерен на порядок и более выше. Тот факт, что уровень внутренних напряжений высок, хотя плотность решеточных дислокаций в теле зерен зачастую незначительна, подтверждает, что источниками напряжений являются неравновесные границы зерен.

2.2.2. Описание структурной модели. Результаты представленных в §2.1 экспериментальных исследований, а также приведенные в п. 2.2.1 представления о неравновесных границах зерен являются базисом для разработки структурной модели наноструктурных материалов, полученных ИПД [12, 150, 207]. Предметом этой модели является описание дефектной структуры (типов дефектов, их плотности, распределения) атомно-кристаллического строения наноструктурных материалов, а задачей — объяснение необычных структурных особенностей, наблюдаемых экспериментально: высоких внутренних напряжений, искажений и дилатаций кристаллической решетки, разупорядочения наноструктурных интерме-таллидов, образования пересыщенных твердых растворов в сплавах, большой запасенной энергии и других. На этой основе становится возможным объяснение, а также предсказание уникальных свойств наноструктурных материалов (гл. 4 и 5). Вместе с тем, как было показано выше, типичные наноструктуры в сплавах, подвергнутых ИПД, весьма сложны. Более простым является пример чистых металлов, где основным элементом наноструктуры выступают неравновесные границы зерен. Структурная модель металлов, подвергнутых ИПД, может быть представлена следующим образом.

Помимо дислокаций важным дефектом наноструктурного состояния являются дисклинаций. Хорошо известно, что дисклинаций могут формироваться в зернограничных стыках и их образование связано с эволюцией структуры при больших деформациях [11, 214, 215]. Мощность дисклинаций зависит от взаимных ориентации зерна и плоскости границы зерна [11, 215]. В работе [210] предложена модель массивов произвольных дисклинаций и произведена оценка их вклада в величины внутренней упругой деформации, энергии границ зерен и увеличения объема наноструктурных материалов, полученных методами ИПД.

Катализатор (кислоту) добавляют первым (для предотвращения локального перегрева смолы), затем вводят связующее и перемешивают до получения однородной массы. При высоком содержании азота в смоле вводят оксид железа, препятствующий образованию в форме «проколов». Поддержание температуры смеси на нужном уровне (15—30 °С) является очень важным для получения бездефектных форм. Далее текучей формовочной землей заполняют формы, после чего ее уплотняют вибрацией или вручную. Ящики для литейных форм могут быть изготовлены из неметаллических материалов. Поскольку отверждение массы начинается с момента смешения кислоты со связующим, то формовочная смесь имеет ограниченное время жизни. Деформация предварительно отформованной заготовки приводит к снижению прочности изделия.

Хотя несколько краун-соединений появилось на рынке в качестве химических реагентов, они пока еще дороги. Хорошо известно, что жизненный Цикл любого коммерческого продукта включает стадию исследований, начало коммерческого производства, рост производства, насыщение рынка и стадию снижения производства. На рис. 6.1 [1] схематически представлено соотношение между ценой и объемом производства на различных стадиях жизненного цикла коммерческого продукта. Со времени открытия краун-эфиров прошло около двух десятилетий, и краун-соединения ныне стоят на пороге рождения их как коммерческого продукта благодаря быстрому развитию исследований в последние годы. Обычно при выходе нового продукта на рынок исследования в области синтеза, изучения свойств и приложений тесно связаны с положением на рынке; с ростом спроса уменьшается Цена, а уменьшение Цены в свою очередь расширяет рынок. Как упоминалось в гл. 2, если в результате роста спроса можно будет применить многотониажную промышленную технологию, то цена краун-соединений будет на уровне обычных промышленных материалов, поскольку для их производства не требуется ни спещфического сырья, ни особой технологии. Следует также ожидать, что в ближайшем будущем краун-соединения найдут и другие применения, а именно как иммобилизованные соединения, которые получаются прививкой небольшого количества вещества на поверхность дешевого носителя.

Хотя несколько краун-соединений появилось на рынке в качестве химических реагентов, они пока еще дороги. Хорошо известно, что жизненный Цикл любого коммерческого продукта включает стадию исследований, начало коммерческого производства, рост производства, насыщение рынка и стадию снижения производства. На рис. 6.1 [1] схематически представлено соотношение между ценой и объемом производства на различных стадиях жизненного цикла коммерческого продукта. Со времени открытия краун-эфиров прошло около двух десятилетий, и краун-соединения ныне стоят на пороге рождения их как коммерческого продукта благодаря быстрому развитию исследований в последние годы. Обычно при выходе нового продукта на рынок исследования в области синтеза, изучения свойств и приложений тесно связаны с положением на рынке; с ростом спроса уменьшается Цена, а уменьшение цены в свою очередь расширяет рынок. Как упоминалось в гл. 2, если в результате роста спроса можно будет применить многотониажную промышленную технологию, то цена краун-соединений будет на уровне обычных промышленных материалов, поскольку для их производства не требуется ни спадафического сырья, ни особой технологии. Следует также ожидать, что в ближайшем будущем краун-соединения найдут и другие применения, а именно как иммобилизованные соединения, которые получаются прививкой небольшого количества вещества на поверхность дешевого носителя.

При подготовке второго издания справочника пришлось вновь столкнуться с некоторыми трудностями, связанными с тем, что основные физико-химические свойства полимеров определялись на образцах, полученных в различных условиях. Этим объясняется плохая сопоставимость данных о физико-химических свойствах, взятых из разных источников. Кроме того, вследствие различия в методах изготовления образцов и методах испытаний затруднено сравнение образцов отечественных и зарубежных материалов. Поскольку свойства различных пластических масс в значительной мере определяются условиями их переработки в изделия, отсюда понятен и тот разнобой в сведениях об их характеристиках, встречающихся в литературе. При практическом использовании приведенных в справочнике данных все эти соображения необходимо учитывать.

Б последующих разделах этой главы будут описаны физико-химические основы изготовления пленочных материалов из растворов полимеров, причем главное внимание будет обращено на те особенности, которые присущи формованию именно пленочных материалов, поскольку общие принципы формования изделий из растворов были достаточно подробно обсуждены в предыдущих главах, и в частности в главе, посвященной получению искусственных волокон.

Конкретное описание применения красителей в различных отраслях промышленности дается только для типовых процессов и только в том объеме, который, по нашему мнению, необходим для студента-анилинокрасочника. В ряде случаев приведены примеры перспективных методов применения красителей, основанных на использовании неводных сред при крашении и печатании различных полимерных материалов. Поскольку большая часть красителей применяется в текстильной промышленности, описание теории и технологии крашения и печатания текстильных материалов дается с большими подробностями, чем описание процессов применения красителей в других отраслях производства.

Органические пигменты представляют собой особую группу соединений, применяемых в лакокрасочной промышленности не столь широко, как рассмотренные ранее неорганические пигменты, поскольку уступают неорганическим по ряду технических свойств Например, они характеризуются невысокими коррозионной стойкостью, атмосфере- и светостойкостью, имеют низкую укрывистость и обладают чувствительностью к действию химических реагентов Однако эти пигменты имеют исключительно яркий, насыщенный цвет и обладают очень высокой интенсивностью Цвет органических пигментов может быть самым различным — от зеленовато-желтого до черного, причем очень большое число пигментов имеет красный, зеленый и синий цвет Последнее обстоятельство позволяет значительно расширить цветовую гамму пигментированных лакокрасочных материалов, поскольку среди неорганических пигментов мало доступных и дешевых пигментов именно этих цветовых оттенков

В монографии рассмотрены такие аспекты адгезионной прочности, как температурно-временная зависимость прочности, внутренние напряжения, характер разрушения, а также методы измерения адгезионной прочности. Характеристикой адгезионной прочности может являться не только усилие разрушения клеевых соединений или модельной системы адгезив — субстрат, но и предел прочности слоистых пластиков при изгибе и растяжении, а также предел прочности при растяжении комбинированных полимерных материалов, поскольку механические характеристики подобных систем зависят от адгезии между компонентами.

Формула (4) может быть выведена из разложения функции податливости в ряд Тейлора с переменными t и Т. Разложение справедливо в одинаковой мере как для термореологически сложных, так и для простых материалов, поскольку оно основано на предположении о том, что измеренная характеристика является функцией двух переменных: Tut. Обозначим lg D через М и lg / через 2. Тогда при температуре приведения Тг = Т —А Г и одновременном изменении z до

остались также проблемы реологии жестких конструкционных материалов, поскольку данная книга посвящена главным образом полимерам, находящимся в текучем состоянии, и лишь эпизодически, по мере необходимости авторы касаются высокоэластического состояния полимеров.

Полиорганофосфазены являются новым классом полимеров, которые, так же как и кремнийорганические полимеры, отличаются тем, что имеют неорганическое строение основной цепи. Однако благодаря легкому протеканию реакций замещения [1, 2] поли-фосфазены охватывают значительно большее разнообразие полимеров. Три основные группы полимеров включают алкокси- (I), арилокси- (II) и аминозамещенные (III) гомополимеры, имеющие строение повторяющейся единицы, представленное на рис. 1, а также всевозможные сополимеры с разнообразным смешанным строением заместителей. Гомополимеры I и II представляют собой полукристаллические материалы, в то время как сополимеры с приблизительно равным молярным сотношением двух компонентов, как правило, аморфны. Ввиду того что никаких доказательств кристаллического строения аминозамещенных гомополимеров не найдено [3, 4], эти материалы здесь рассматриваться не будут. Необычной чертой поведения алкокси- и арилоксигомополимеров при плавлении является наличие двух температурных переходов первого порядка [5, 6]. При более низкой температуре перехода, которую мы обозначим Т(\), полимер размягчается, но сохраняет определенную степень упорядоченности. Верхняя температура перехода, при которой происходит переход в изотропную жидкость, представляет собой, таким образом, истинную температуру плавления Тт. В полифосфазенах эти два перехода, Т(1) и Тт, разделены необычно широким интервалом температур, составляющим 150—250 °С. Положение Т(1) имеет решающее значение для практического применения этих материалов, поскольку размягчение полимера при этой температуре определяет верхнюю границу су-

где (Tft — ордината изохроны при t = tk (k = О, 1, ..., ft); ц> (е) — изохрона а = а (е) при t = О, которая согласно (1.32) должна, укладываться на кривую / (t), зависящую только от физических свойств материалов. Поскольку деформации ползучести при t = О точно измерить невозможно, то равенством (1.33) пользоваться не следует (ф (е) не определена).




Механизма органических Механизма процессов Механизма восстановления Механизме образования Механизмом включающим Механизму гидролиза Механизму нуклеофильного Механизму полимеризуются Механизму протекает

-
Яндекс.Метрика