Главная --> Справочник терминов


Механических характеристик Благодаря созданию ряда оригинальных методов синтеза полимеров и применению новых систем инициаторов и катализаторов получены новые виды пластических масс, синтетических каучуков, химических волокон, пленок, быстро развивается производство синтетических термически стойких материалов, искусственной кожи, синтетических клеев, герметизирующих составов, компаундов, ионитовых поглотителей и т. д. Применение разнообразных методов исследования позволило детально изучить зависимость химических, механических, электрических и других свойств полимеров от их строения.

Физика полимеров в той части, которая рассматривает полимеры как конструкционные материалы, является сравнительно новым разделом физики твердого тела [1.5]. Физику твердого тела, и физику полимеров в частности, интересует связь между строением и свойствами веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, в которых можно выделить ряд важнейших подсистем (решетка, молекулы, атомные ядра, система электронов, система спинов, фононы и др.). Хотя указанные подсистемы связаны между собой, воздействия на твердые тела различных силовых полей (механических, электрических и магнитных) вызывают раздельное проявление их особенностей. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонанса, а также диэлектрическими и акустическими методами.

IV. Релаксационный спектр с несколькими стрелками действия и с учетом температурной зависимости собственных частот или времен жизни .релаксаторов позволяет сразу ввести в рассмотрение принцип температурно-временной эквивалентности, который, в свою очередь, наиболее наглядно иллюстрирует природу релаксационных состояний полимеров. Понимание реальности трех физических (релаксационных) состояний, которые не являются ни фазовыми, ни агрегатными, дает ключ к пониманию" практически всех механических, электрических и магнитных свойств полимеров, а значит, и к управлению ими. (Напомним, что стрелка действия была введена без конкретизации природы силового поля, в которое помещена система). В действительности можно говорить вообще обо всех физических свойствах, включая и те, которые связаны с фазовыми равновесиями и переходами [15, с. 176—270; 22].

Внутренняя энергия — это сумма кинетической и потенциальной энергий частиц системы. Элементарная работа в самом простом случае — это работа системы против внешнего давления бЛ = pdV. В общем случае работа системы совершается против внешних сил различной природы: механических, электрических, гравитационных, магнитных и др. Она выражается уравнением

Различают термодинамическую и кинетическую гибкости полимерных цепей. Так, если время воздействия в на полимер механических, электрических или других внешних сил больше, чем т*, то всегда будет наблюдаться равновесное распределение звеньев по различным поворотным изомерам. При этом будет наблюдаться равновесная или термодинамическая гибкость макромолекулы, которая характеризуется статистическим сегментом.

где 6Q — малое количество теплоты, переданное системе; df/ — бесконечно малое увеличение внутренней энергии системы (полимера); 8 А — элементарная работа, совершаемая против внешних сил. Внутренняя энергия системы — это сумма кинетической и потенциальной энергий составляющих ее частиц. Элементарная работа в самом простом случае — это работа системы против внешнего давления 8A=pdV. В общем случае работа системы совершается против внешних сил различной природы — механических, электрических, гравитационных, магнитных и других. Она выражается в виде

ПЭВД в зависимости от типа и конструктивных особенностей реакционных устройств, а также от параметров процесса полимеризации может существенно различаться по молекулярной массе, ММР, параметрам молекулярной и надмолекулярной структуры. Это, в свою очередь, ведет к различиям в потребительских свойствах - реологических, физико-механических, электрических и других, которые важны для переработки и применения полиэтилена.

В общем случае работа системы совершается против внешних сил различной природы — механических, электрических, гравитационных, магнитных и других; она описывается уравнениями:

Эпоксидные полимеры обладают таким комплексом свойств (адгезионных, механических, электрических и др.), который во многих случаях делает их незаменимыми в качестве основы клеев, лакокрасочных покрытий, компаундов и армированных пластиков. Благодаря этому эпоксидные смолы заняли важное место в ряду промышленных полимерных материалов. Это относится не столько к объему их производства, сколько к их роли, так как в ряде случаев эпоксидные смолы используют для создания наиболее ответственных изделий. Промышленный выпуск, применение и разработка новых эпоксидных полимеров и композиций на их основе развиваются быстрыми темпами. Кроме того, эти полимеры обычно служат моделями для изучения наиболее характерных свойств сетчатых полимеров.

Эпоксидные полимеры обладают таким комплексом свойств (адгезионных, механических, электрических и др.), который во многих случаях делает их незаменимыми в качестве основы клеев, лакокрасочных покрытий, компаундов и армированных пластиков. Благодаря этому эпоксидные смолы заняли важное место в ряду промышленных полимерных материалов. Это относится не столько к объему их производства, сколько к их роли, так как в ряде случаев эпоксидные смолы используют для создания наиболее ответственных изделий. Промышленный выпуск, применение и разработка новых эпоксидных полимеров и композиций на их основе развиваются быстрыми темпами. Кроме того, эти полимеры обычно служат моделями для изучения наиболее характерных свойств сетчатых полимеров.

Форма и размеры образцов зависят от вида механических, электрических и других испытаний, по результатам «оторых определяется коэффициент старения материала или изделия. Иногда определяется сопротивление старению конкретных изделий, из которых после экспонирования вырезают образцы стандартной формы.

тата целлюлозы и полиакрилонитрила в присутствии привитого сополимера ацетата целлюлозы и полиакрилонитрила, а также полиакрилонитрила и поливинилового спирта в присутствии сополимера на основе этих полимеров. Комплекс структурно-механических характеристик таких волокон зависит от соотношения полимерных компонентов в смеси.

Ответ. Прочность на разрыв, а также усталостные характеристики волокон и пленок при одинаковой степени ориентации определяются количеством слабых мест в полимерном материале. На молекулярном уровне такими дефектами являются контакты между концами макромолекул. С увеличением полидисперсности (при одинаковой средней степени полимеризации) количество слабых мест в изделиях увеличивается, что и влечет за собой ухудшение механических характеристик.

Комплекс структурно-механических характеристик полимерных материалов зависит от физических состояний полимеров.

Вязкостные свойства концентрированных растворов и расплавов полимеров - это проявление структурно-механических характеристик; они описываются зависимостью напряжения сдвига т от градиента скорости сдвига у .

На стадии формования или на последующих стадиях переработки в полимере могут происходить существенные структурные изменения (например, изменение надмолекулярной структуры, развитие молекулярной ориентации), которые могут быть результатом целенаправленного воздействия, предпринимаемого для улучшения физических и механических характеристик полимера. Связь между процессами формования и изменением структуры имеет большое практическое значение. Понимание этой связи помогает выбирать оптимальный технологический процесс.

значительно быстрее, чем сердцевина, что приводит к образованию мелкозернистой поверхностной структуры и крупных сферолитов в центре. Присутствие искусственных зародышеобразователей уменьшает размеры кристаллитов в сердцевине, снижая таким образом неоднородность размеров сферолитов в изделии. Понятно, что этот эффект желателен с точки зрения улучшения механических характеристик материала изделия. Если показатель преломления зародышеобразователей не отличается от показателя преломления основного полимера, то оптические свойства при этом также улучшаются.

Изложенное показывает, что ниже температуры стеклования трудно ожидать перестройки структуры, поскольку полимерные цепи практически неподвижны. Поэтому любая молекулярная ориентация, имеющаяся в стеклообразном состоянии, сохраняется практически неизменной до тех пор, пока полимер не нагревают до температуры стеклования. «Замороженные» деформации, присутствие которых приводит к анизотропии механических характеристик полимера в стеклообразном состоянии, являются следствием молекулярной ориентации, возникающей при деформации или течении полимеров при температуре, превышающей температуру стеклования.

рования заключается в нанесении локального удара жестким инден-тором по испытуемому изделию; регистрации аналогового сигнала, пропорционального текущей скорости движения индентора; аналого-цифровом преобразовании этого сигнала и расчете комплекса основных физико-механических характеристик контролируемого материала по специально разработанным алгоритмам с учетом принятых физических моделей.

В табл. 8.7. приведены результаты определения механических характеристик исследуемых резин. Видно, что введение в резиновую смесь хлоропренового каучука резко увеличивает относительное удлинение, но вместе с тем снижает прочностные характеристики и твердость. Самой высокой прочностью обладают резиновые смеси на основе комбинации каучуков СКН-40 и СКМС-ЗОРП, содержащие 60 масс. ч. каучука.

61, Белкин И. М., Виноградов Г. В., Леонов А. И. Ротационные приборы. Измерение вязкости и физико-механических характеристик материалов. М., «Машиностроение», 1968. 272 с.

Кристаллизация полимеров приводит к повышению их модуля упругости, твердости, прочности и других механических характеристик. Многие исследователи пытаются связать это со степенью кристалличности. При этом предполагают, что особенности механических свойств определяются главным образом аморфными участками, а кристаллиты в силовом поле или поворачиваются, или разрушаются. Установлено, что своеобразный характер деформации полимеров связан с фазовым превращением, происходящим в силовом поле, т. е. с процессом рекристаллизации.




Международной заместительной Макромолекул образующих Межфазного натяжения Межмолекулярных взаимодействий Межмолекулярной ассоциации Межмолекулярное притяжение Межмолекулярному взаимодействию Межструктурной пластификации Мелкодисперсном состоянии

-
Яндекс.Метрика