Главная --> Справочник терминов


Межфазной поверхности а) реакции, идущие с большой скоростью при таких температурах, когда не могут протекать обменные процессы между образующимися полимером и низкомолекулярными продуктами. Например, образование полиэфиров из хлорангидридов дикарбоновых кислот и двухатомных фенолов в условиях межфазной поликонденсации или в растворе;

С целью введения ароматических 'колец в макромолекулу сложных полиэфиров последние получают методом межфазной поликонденсации хлорангидридов ароматических или алифатических кислот с бисфенолами или алифатическими гликолями [5, с. 311].

Для проведения межфазной поликонденсации наиболее целесообразно использовать мономеры с высокой реакционной способностью (дихлорангидриды дикарбоновых кислот, диамины и бисфе-

нолы), так как время контакта реагентов при этом уменьшается. Кроме того, высокая реакционная способность мономеров позволяет осуществлять межфазную поликонденсацию при низких температурах, при которых побочные реакции практически не протекают. При межфазной поликонденсации допустимо наличие в мономерах инертных примесей.

Межфазную поликонденсацию обычно проводят при комнатной температуре. Повышение температуры реакции, как правило, приводит к уменьшению выхода « молекулярной массы образующегося полимера. Механизм межфазной поликонденсации недостаточно изучен, поэтому условия ее проведения определяются эмпирическим путем. Преимущества этого процесса — высокие скорости и низкие температуры реакции. Кроме того, не требуется высокая степень очистки реагентов (при низких температурах побочные реакции не столь важны), стехиометрический состав поддерживается автоматически.

Применение межфазной поликонденсации в промышленности ограничено необходимостью использовать дорогостоящие мономеры с высокой реакционной способностью (например, дихлорангид-риды дикарбоновых кислот), большими объемами фаз и затратами на регенерацию растворителя. Этот метод целесообразно использовать для получения продуктов, синтез которых другими методами затруднен, например из термически нестойких мономеров, высокоплавких полимеров, для получения высокодисперсных полимерных порошков.

Синтез полиэфиров из гликолей и дикарбоновых кислот проводится главным образом в расплаве исходных веществ при довольно высоких температурах (170—250 °С). Полиэтерификацию можно вести и в растворе высококипящего растворителя, а также методом межфазной поликонденсации.

Полиалкилентерефталамиды получают методом межфазной поликонденсации алифатических диаминов и дихлорангидрида те-рефталевой кислоты:

Полипиперазин 4,4'-с ульфонилбензимид получают методом межфазной поликонденсации дихлорангидрида 4,4'-сульфонил-бензойной кислоты и пиперазина:

При проведении поликонденсации на границе раздела фаг (межфазная поликонденсация) реагирующие компоненты растворяют раздельно в двух несмешивающихся жидкостях. Как правило, одной нз жидкостей служит вода, а другой — органическое вещество. Обычно одним кз компонентов реакция является ди-хлорангндрид дикарбоновой кислоты, другим — диамин, диол и т. д При соприкосновении жидкостей па границе раздела происходи! образование полимера, а побочный продукт, растворяясь в одной из жидкостей, удаляется из сферы реакции. Поэтому межфазиэя поликондепсация — необратимый процесс и соблюдение эквнмоляр-пости бифункциональных веществ не является необходимым. При межфазной поликонденсации можно получать линейные полимерь: с высоким молекулярным весом (вплоть до 500000). Пленка полимера, образующаяся на границе раздела, непрерывно удаляется, Скорость протекания реакции не очень велика; ее можно увеличить путем перемепшвзния> В этом случае поверхность раздела между каплями полимера и средой резко возрастает.

Прежде чем начать обсуждение этих процессов, необходимо подчеркнуть, что хотя реакции конденсации и присоединения принципиально и практически хорошо известны большинству химиков-органиков, эти же реакции, ведущие к синтезу полимеров, имеют, помимо применения полифункциоиальных мономеров, еще и то существенное отличие, что они должны протекать с очень высокими выходами. В то время как в органической химии реакция, идущая с выходом основного продукта 90%, считается превосходным препаративным методом, в случае получения высокомолекулярного полимера по-ликоденслция должна протекать с выходом, близким к 100% (за исключением реакций межфазной поликонденсации). Последние несколько процентов выхода реакции означают взаимодействие концевых групп длинных молекул между собой с образованием продукта с очень большим молекулярным весом. Для достижения такого эффекта необходимо, чтобы основная реакция не сопровождалась побочными реакциями, в результате которых происходит потеря концевых групп, и образованием боковых цепей, а исходные мономеры должны быть чрезвычайно чистыми. В большинстве случаев (HQ не всегда) при проведении поликоидеисации необходимо применять исходные мономеры в строго эквимолярных количествах.

Выделение каучука Из латекса. Агрегативную и кинетическую устойчивость синтетических латексов, учитываемую на всех стадиях технологического процесса их получения и переработки, определяет наличие на поверхности латексных частиц адсорбционного слоя из молекул гидратированного эмульгатора. Свойства межфазной поверхности — адсорбированного слоя гидратированных молекул поверхностно-активных веществ (ПАВ) со структурой, близкой к мицеллярной [26], — определяют устойчивость латекса при транспортировании насосами, при хранении, при выделении каучука из латекса. Специфичность воздействия отдельных факторов на латексы привела к делению агрегативной устойчивости на отдельные виды стабильности — к механическому воздействию, к электролитам, к замораживанию, к тепловому воздействию, к действию растворителей [27], но во всех случаях при нарушении устойчивости происходит снятие или преодоление одного и того же по своей природе «стабилизующего барьера» [28—30].

Неустойчивость коллоидных систем объясняется большой, всегда положительной свободной поверхностной энергией, сосредоточенной на межфазной поверхности раздела. Поверхностная энергия С5 представляет собой произведение поверхностного натяжения о на площадь поверхности раздела фаз 5. В соответствии с законами термодинамики такие системы неравновесны и стремятся перейти в состояние, соответствующее минимальной свободной энергии, т. е. разделиться на отдельные фазы с минимальной поверхностью раздела.

способствует увеличению межфазной поверхности и, следова-

Дальнейшее развитие эта теория получила в модели автора работ [231, 232], который изучал продукты реакции на межфазной поверхности, состоящие, согласно его данным, главным образом из CuxS, при X равном 1,8-2,0. Первой стадией при возникновении адгезии является образование CuxS. Этот слой может увеличиваться за счет катионной диффузии, то есть переноса ионов металла и свободных электронов через сульфидный слой. На границы поверхности "сера-сульфид" происходит реакция:

Детальный механизм действия промоторов адгезии в резиновой смеси был предложен в [234]. Мета л л органические соли кобальта проявляют два независимых друг от друга эффекта: ускоряют вулканизацию и увеличивают плотность поперечных связей для резиновых смесей с высоким содержанием серы. Другое действие солей кобальта заключается в участии в реакции замещения на поверхности латуни и образовании неорганических ионов Со2+ на межфазной поверхности в процессе вулканизации. Ионы Со2+ внедряются в пленку оксида цинка при умеренных температурах перед образованием сульфидной пленки. Вероятно их присутствие в виде ионов Со3+, так как хорошо известно, что трехвалентные ионы металла в решетке оксида цинка уменьшают его удельную элект-ропро-водность и скорость диффузии ионов Zn2+ через полупроводящую пленку. При внедрении в оксид цинка перед началом сульфидирования значительного количества Со3+, образование и миграция ионов Zn2+ к поверхности замедляется. Однако диффузия включенной металлической меди к поверхности не нарушается, так как ионы Си+ мигрируют не промежуточно, а преимущественно вдоль границ зерен слоя оксида цинка [256]. Следовательно, при введении солей кобальта начальное образование сульфида цинка на поверхности корда подавляется и стимулируется быстрое образование CuxS, что видно из рисунка 20.

В большинстве исследований эмульсия характеризуется объемно-поверхностным диаметром капель dyi> так как он связан простой зависимостью с площадью межфазной поверхности S3M

Стабилизирующее действие СЭ определяется их способностью адсорбироваться на межфазной поверхности. Механизм стабилизации дисперсии высокомолекулярных СЭ еще достаточно не изучен. Факторами стабилизации могут быть электростатическое отталкивание частиц вследствие образования на их поверхности двойного электрического слоя, препятствующего их сближению; образование на поверхности частиц структурно-механического барьера; взаимное отталкивание частиц в результате теплового движение гибких макромолекул (энтропийный фактор) [23].

Для описания скорости гетерофазной полимеризации винилхлорида предложен ряд моделей, различающихся предположениями о влиянии стадий обрыва цепей в мономерной и полимерной фазах и массопере-носа радикалов между фазами на количество радикалов в каждой фазе. Гетерофазный характер полимеризации затрудняет определение констант в каждой фазе. Первоначально представления о гетерофазном характере полимеризации ВХ были сформулированы в работах Бенгоу и Норриша [199, 200], в которых подчеркивалась роль межфазной поверхности. При дальнейшем развитии этого подхода в полимерной фазе выделялся б-слой с повышенной концентрацией радикалов в результате их перехода из мономерной фазы [240].

Адгезия, или прилипание тел друг к другу, — одно из сложнейших явлений. Для ее объяснения существует довольно много различных теоретических подходов, но ни один из них самостоятельно полностью не решает всех проблем адгезии. С химической точки зрения адгезию можно объяснить химическими взаимодействиями между телами различной природы. Химические связи легко образуются на поверхности пластмасс, которые всегда'содержат активные функциональные группы, способные химически взаимодействовать с металлами или с покрывающими поверхность металлов оксидами. Молекулярная теория объясняет явление адгезии проявлением на межфазной поверхности межмолекулярных сил, взаимодействием типа иси — диполь или образованием водородных связей. Этим, например, объясняют слипание при высыхании мокрых травленых пленок полиэтилена. "Электрическая теория полагает, что при контакте двух тел образуется двойной электрический слой, препятствующий раздвижению тел

а и 6 — образование коагуляциоиных контактов, б — конденсационные контакты глоб\л, г — переход коагуляционных контактов в конденсационные (начало «обра иеиия фаз»), д — исчезновение межфазной поверхности (незаштрихованные участки — агрегаты молекул эмульгатора), / — молекула эмульгатора, ? — молекула воды. ? — макромолекула

Адгезия, или прилипание тел друг к другу, — одно из сложнейших явлений. Для ее объяснения существует довольно много различных теоретических подходов, но ни один из них самостоятельно полностью не решает всех проблем адгезии. С химической точки зрения адгезию можно объяснить химическими взаимодействиями между телами различной природы. Химические связи легко образуются на поверхности пластмасс, которые всегда'содержат активные функциональные группы, способные химически взаимодействовать с металлами или с покрывающими поверхность металлов оксидами. Молекулярная теория объясняет явление адгезии проявлением на межфазной поверхности межмолекулярных сил, взаимодействием типа иси — диполь или образованием водородных связей. Этим, например, объясняют слипание при высыхании мокрых травленых пленок полиэтилена. "Электрическая теория полагает, что при контакте двух тел образуется двойной электрический слой, препятствующий раздвижению тел




Метоксилов соответственно Мезоионных соединений Мгновенной деформации Микробного происхождения Микроскопической обратимости Микроскопическом исследовании Минеральных наполнителей Минеральными веществами Минимальных количествах

-
Яндекс.Метрика