Главная --> Справочник терминов


Макромолекул образующих Рис. 3.19. Схематическое изображение разреза кристаллической области пачки макромолекул целлюлозы (1 - поперечное сечение полимерной цепи)

Так, проявление сегментальной подвижности макромолекул целлюлозы возможно лишь при условии присутствия хотя бы небольших количеств воды, являющейся пластификатором для этого полимера. В условиях интенсивного набухания, а также в концентрированных растворах макромолекулы природных во-локнообразующих полимеров способны к самоупорядочению с образованием жидкокристаллических структур.

Ответ. Для этого случая алхимическое правило "подобное растворяется в подобном" несправедливо: целлюлоза способна лишь ограниченно набухать в воде. Это определено в основном следующими факторами: относительной жесткостью макромолекул целлюлозы; высокой плотностью когезии как воды, так и целлюлозы, обусловленной интенсивными водородными связями.

Взаимодействие иона гидроксония с глюкозидной связью приводит к ее возбуждению и ослаблению. Происходит разрыв кислородного мостика с образованием иона карбония. Вследствие своей малой устойчивости ион карбония быстро реагирует с водой, образуя ОН-группу и генерируя протон. Протон с водой вновь образует ион гидроксония. Существенное влияние на скорость гидролиза оказывает плотность упаковки макромолекул целлюлозы (так как процесс гетерогенный). Например, целлюлозные волокна гидролизуются со значительно меньшей скоростью, чем целлюлоза, находящаяся в растворенном состоянии, где все глюкозидные ОН-группы доступны разрушающему действию гидролизующего агента (процесс гомогенный). Гидролиз целлюлозы протекает постепенно, приводя к продуктам со все более короткими молекулярными цепями, вплоть до 3-D-глюкозы. Последовательность стадий гидролитического распада целлюлозной молекулы выражается следующей схемой:

Повышение температуры интенсифицирует также гидролитический распад макромолекул целлюлозы. Существует эмпирическое правило:

112. Показать схемы образования спирали макромолекул целлюлозы и укладки их в пачки. Объяснить их высокую организованность и стабильность.

Эта реакция не охватывает все мономерные звенья макромолекул целлюлозы (приблизительно одна из шести гидроксильных групп образует ксантогенат натрия) как вследствие гетерогенности реакции, так и разной реакционной способности первичного и вторичного гидроксилов. Однако уже такая степень превращения нарушает регулярность строения целлюлозы, разрушает плотную упаковку ее макромолекул и позволяет перевести их в раствор. Последующий гидролиз ксантогенатов серной кислотой приводит к регенерации целлюлозы из-за неустойчивости и разложения ксан-тогеновой кислоты:

При гидролизе целлюлозы происходит разрыв глюкозидной связи между элементарными звеньями в макромолекуле, причем легче этот процесс протекает в присутствии кислот (H2SOj, HC1, НзРОч). В принципе реакцию можно довести до образования глюкозы, но обычно образуются промежуточные сахариды, построенные по типу целлюлозы, или более высокомолекулярные продукты. Процесс гидролиза в значительной степени зависит ог степени упорядоченности макромолекул целлюлозы. Чем меньше эта упорядоченность, тем более доступны участки макромолекул в неупорядоченных областях атаке гидролизующих агентов. По типу кислотного гидролиза целлюлозы протекает микробиологическая деструкция ее под действием природных ферментов. Деструкция целлюлозы под действием ще-

В гетероцепных полимерах вращение происходит вокруг связей С — О, С — N, Si— О, С — С и т. д. Потенциальные барьеры вращения вокруг этих связей невелики, поэтому цепные молекулы полиэфиров, полиамидов, силиконовых куачуков, полиуретанов, поли-эпоксидов должны быть очень гибкими. Но их гибкость может быть ограничена сильным межмолекулярным взаимодействием, особенно в тех случаях, когда между звеньями соседних цепей возникают прочные водородные связи (см. рис. 12}, например у полиамидов. При образовании прочных межмолекулярных связей ограничивается подвижность не только тех звеньев, которые участвуют в образовании этих связей, но и звеньев, примыкающих к ним, т. е. уменьшается гибкость цепи. Так, цепи полиамидов отличаются значительно меньшей гибкостью, чем цепи полиэтилена. ", Одним из наиболее жестких гетероцепных высокомолекулярных соединений является целлюлоза, в которой содержится большое число групп ОН, способных к образованию водородных связей, Для макромолекул^ целлюлозы характерно значительное внутри-и межмолекулярпое взаимодействие и высокий потенциальный барьер вращения.

Это, по-видимому, объясняется следующим. В сухой гидрат-Целлюлозной нити макромолекулы, будучи более или менее ориек-тиропа ны вдоль оси нити, связи 1ш между собой межмолекул яр-ними связями (главным образом, водородными связями между группами ОН соседних макромолекул целлюлозы).

Согласно теории аморфно-кристаллического строения целлюлозы, ее цепные макромолекулы проходят в продольном направлении микрофибрилл, образуя чередующиеся участки, различающиеся степенью упорядоченности, - кристаллические и аморфные. Эти участки, если принять структурное понятие фазы, можно рассматривать как кристаллическую и аморфную фазы. Поверхность раздела между фазами отсутствует. Кристаллические участки постепенно переходят в аморфные, а последние снова в кристаллические. Поскольку длина макромолекул целлюлозы (2,5 мкм и более) намного превышает длину кристаллических участков, каждая целлюлозная цепь проходит последовательно ряд кристаллических и аморфных участков. Кристаллические участки называют также кристаллитами (см. также 5.3.3 и рис. 5.7).

Вследствие малого размера гидроксилыюй группы этот сополимер не лишен способности к кристаллизации. Между участками соседних макромолекул, образующих кристаллиты, возникают водородные связи, обусловленные присутствием гидроксильных групп. Этим объясняется большая прочность пленок и нитей, изготовленных из продукта гидролиза сополимера этилена и винилацетата, по сравнению с прочностью таких же изделий из полиэтилена. Одновременно с этим улучшается растворимость сополимера в некоторых органических растворителях и появляется способность к ограниченному набуханию в воде.

Полимеры могут находиться в различных агрегатных состояниях, например в твердом (кристаллическом и некристаллическом) или жидком (расплав или раствор). Полимеры состоят из совокупности линейных, разветвленных или сшитых макромолекул, образующих пространственные сетки (макросетчатые полимеры), к которым относятся вулканизованные, или сшитые, эластомеры (сеточные полимеры). В предельных случаях — это очень густые сетчатые структуры (микросетчатые полимеры).

Сшитый полимер — это полимер, построенный из макромолекул, образующих трехмерную сетку (см. рис. 1.1).

Сшитый полимер — это полимер, построенный из макромолекул, образующих трехмерную сетку (см. рис. 1.1).

Он считает, что напряжение растянутого полимера F может зависеть только от числа пх упруго растянутых макромолекул, образующих каркас, воспринимающий на себя всю внешнюю

Помимо неопределенности констант уравнение Ф. Бики имеет и другие недостатки. Одним из них является то, что эти представления не учитывают роль межмолекулярного взаимодействия в процессах разрыва [95, с. 312]. В последнее время появились попытки учесть межмолекулярные взаимодействия в рамках молекулярных моделей. Так, Г. А. Патрикеев [94], считая, что всю внешнюю нагрузку воспринимает небольшая часть упруго-растянутых макромолекул, образующих непрерывный каркас, который армирует полимер, в то же время допускает, что число молекул в каркасно-связанном состоянии и их упругое напряжение зависят от межмолекулярногб взаимодействия и температуры. Тем не менее можно утверждать вслед за В. Е. Гул ем [95, с. 314], что в настоящее время еще не создана количественная теория, связывающая молекулярное строение полимера с его физико-химическими свойствами, в том числе и с прочностью.

Аэрогели, полученные из растворов различных концентраций, резко различаются по плотности, механической прочности и величине усадки, выражающей относительное уменьшение объема исходного раствора при сублимировании растворителя. С увеличением концентрации исходных растворов увеличиваются плотность и механическая прочность образцов и уменьшается усадка, но вместе с тем при высоких концентрациях, как мы видели, снижается и удельная поверхность аэрогеля в связи с укрупнением первичных агрегатов макромолекул, образующих скелет аэрогеля. При очень низких концентрациях полимера в исходном растворе происходит сжатие каркаса аэрогеля вследствие теплового движения. Опыты по получению аэрогелей высококристаллических полиэтилена и полипропилена показали, что для полипропилена, растворенного при температуре 190° в бензоле, охлажденного при 0° и замороженного при температуре —78°, удельная поверхность имеет величину порядка 25 м2/г.

Свойства волокон и их взаимодействие с красителями зависят не только от химического строения макромолекул, образующих волокнистые материалы, но и от расположения этих макромолекул в волокне — тонкой или надмолекулярной структуры волокон. Это понятие включает представления о степени упорядоченности расположения макромолекул полимера, наличии в волокне кристаллических и аморфных структур, соотношении между ними, возникновении и локализации сложных макромолекулярных ассоциатов — микрофибрилл, фибрилл и других более сложных надмолекулярных образований.

тенева — Брюхановой. При больших напряжениях на участке СВА в силу того, что напряжение становится большим, оно начинает заметно влиять на энергию активации, уменьшая ее в соответствии с представлениями, развиваемыми Журковым с сотр. При малых напряжениях на участке DK. эластомер находится столь длительное время под нагрузкой, что существенную роль начинают играть коррозионные процессы. Эти процессы снижают эффективную энергию активации сложного процесса разрушения и тем самым снижают прочность и долговечность. В работах Патрикеева [6.11, 7.116—7.118] предложен молекулярный механизм разрыва эластомеров при кратковременных испытаниях, когда термофлуктуационные и 'вязкие процессы не успевают ярко проявиться. Особенностью теории Патрикеева является попытка учесть роль надмолекулярных структур в эластомерах — упруго растянутой пачки макромолекул. Он предложил схему перехода от молекулярных характеристик связей в цепях полимера к прочности образца в целом. Лишь небольшая часть упруго растянутых макромолекул образует непрерывную систему — прочный каркас, армирующий растянутый полимер. Напряжение, приводящее к разрыву, зависит от небольшого числа упруго растянутых макромолекул, образующих каркас, воспринимающий практически всю внешнюю нагрузку. Вот почему, по Патрикееву, прочность эластомеров не соответствует модели цепей с равномерно распределенной нагрузкой. В отличие от теории А. Бикки и Ф. Бикки и модели Куна, неравномерная нагрузка падает не на отдельные полимерные цепи сшитого полимера, а на упруго растянутые пачки цепей. При этом температура и межмолекулярное взаимодействие существенно влияют на число упруго растянутых полимерных цепей. Каркасная связанность деформируемых полимеров играет существенную роль и в прочности стеклообразных и кристаллических полимеров. В концепции Патрикеева интересна попытка выявить структурные причины неравномерного распределения напряжений по отдельным элементам структуры в варианте кратковременной прочности, близкой к атермическому механизму разрушения. Кроме того, Патрикеев предложил характеризовать структуру полимеров вероятностью образования каркасных связей при деформировании и рассматривать каркасную связанность как условие жесткости и прочности полимеров. Хотя концепция Патрикеева не объясняет временные эффекты прочности, она представляет интерес как один из подходов, позволяющих учесть реальную структуру полимера.

Глобулы, состоящие из одной молекулы, могут образовываться только в разбавленных растворах. С повышением концентрации раствора единичные глобулы могут контактировать между собой и при определенных условиях сливаться, образуя би-, три- и полимолекулярные глобулы. Этот процесс образования макроглобул может привести к развертыванию макромолекул, образующих глобулы и образованию из них линейных структур, энергетически более выгодных. [ акой переход от глобулы к линейным структурам и более сложным образованиям можно проследить на рис 23 Правда ук рупнение глобул и их перестройка возможны только для гибких и подвижных молекул. В противном случае мономолекулярные глобулы могут существовать без изменения даже в концентрирован-




Материалов применяемых Материалов производится Матричных элементов Медицинских лабораторий Медленных процессов Медленным прибавлением Медленной перегонке Медленное прибавление Макроциклических полиэфиров

-
Яндекс.Метрика