Главная --> Справочник терминов


Макромолекул полимеров полимера (длинноиепное разветвление), так и вследствие внутримолекулярного отщепления водорода от центральных звеньев цепи с переходом к конечным звеньям (короткоцепное разветвление). Вероятность передачи цепи возрастает с увеличением концентрации полимера в реакционной смеси (т. е. с повышением степени превращения этилена), а также с повышением температуры полимеризации. Этим объясняется возникновение преимущественно разветвленной структуры макромолекул полиэтилена, получаемого при 150—200°.

Форма макромолекул полиэтилена зависит от метода его получения*. Наиболее регулярная нитевидная форма характерна для полученного из диазометана полиэтилена (полиметилена). Такой полимер не имеет боковых ответвлений и строение его макромолекул соответствует формуле

I'o полиэтилена при 20' равен 1 с/слг. Меньшее значение действительного удельного веса полиэтилена указывает- на присутствие в нем, наряду с кристаллической фазой., некоторого количества аморфной фазы. Чем больше удельный вес полиэтилена отклоняется от теоретически вычисленного значения, тем меньше содержится в нем кристаллической фазы. Удельный вес полиэтилена, полученного из диазометана (полиметилен), при 20С> равен 0,98 г/см'3. Следовательно, при этой температуре около 95% участков макромолекул полиэтилена составляет кристаллическую фазу. Кристаллиты образуют сфо-ролиты, которые при исследовании в поляризованном свете или в ••электронном микроскопе дают на фотографических снимках характерные сфэролитовые кресты (рис. 65). Кристаллическая структура полиметилена сохраняется до 136", при дальнейшем повышении температуры, в интервале о—.8°, происходит полное плавление кристал- рпс. 55. Вид топкой пленки ЛИТОВ И переход ПОЛИ- электронном микроскопе

Рис. 12.1. Расположение участков макромолекул полиэтилена в элементарной ячейке кристалла

В 1940 г. методом ИК-спекроскопии было обнаружено [58, с. 433], что содержание метильных групп в ПЭВД значительно превосходит возможное содержание концевых групп. На основании этого был сделан вывод о разветвленности макромолекул полиэтилена, но вопрос о длине ветвей и механизме их образования оставался открытым. Изобилие метильных групп при сравнительно малом значении молекулярной массы, ошибочно найденном методом характеристической вязкости, дало основание считать ветви короткими. Лишь в 1953 г. были опубликованы данные [58, с. 32], убедительно показывающие, что условия радикальной полимеризации этилена благоприятны для реакций передачи цепи на полимер по двум механизмам (см. гл.4): мономолекулярному (внутримолекулярному) и бимолекулярному (межмолекулярному), что приводит к образованию в ПЭВД соответственно двух типов разветвленности: короткоцепной (КЦР) и длинноцепной (ДЦР). При этом возникновение КЦР предпочтительно в силу благоприятных стерических факторов и высокой концентрации групп СН2 в пределах пяти последних углеродных атомов растущего макрорадикала.

Первые экспериментальные данные, показавшие, что в ПЭВД имеются упорядоченные области, были получены Банном в 1939 г., обнаружившим в рентгенограммах, наряду с диффузным галло резкие дифракционные рефлексы. Картина рентгеновской дифракции ПЭВД оказалась сходной с картиной рентгеновской дифракции нормальных алкановых углеводородов, например С36Н,4. Полученные данные показали, что ПЭВД, как и нормальные алкановые углеводороды, кристаллизуется в орторомбической кристаллической модификации со следующими параметрами элементарной ячейки: а = 0,736 нм, Ъ = 0,492 нм, с = 0,254 нм, имеющей пространственную группу симметрии D'26h Вскоре была обнаружена связь между степенью разветвленности макромолекул полиэтилена (числом'СН3-групп) и степенью кристалличности. Подробное исследование этой связи показало, что с уменьшением степени разветвленности степень кристалличности увеличивается, а вместе с ней изменяются такие свойства полимера, как плотность, температура плавления, модуль упругости при растяжении, твердость. Раэветвленность макромолекул полиэтилена является одной из важнейших его характеристик, наряду с молекулярной массой и ММР.

Этилен содержит примеси, которые по их влиянию на процесс полимеризации можно разделить на активные и инертные. Активные примеси могут приводить к сшивке макромолекул полиэтилена (ацетилен), сополимеризоваться с этиленом (пропилен), инициировать полимеризацию (кислород) и обрывать растущую цепь полиэтилена (водород, сероводород). Инертные примеси (пропан и др.) лишь разбавляют этилен. Рециркулирующий (возвратный) этилен может содержать также эфиры и альдегиды, которые, окисляясь, могут вестичсебя как активные примеси. Практически для получения полиэтилена высокого давления с инициатором кислородом применяют этилен с чистотой не менее 99,9% (об.).

В результате последней реакции на концах макромолекул полиэтилена появляются метальные и ненасыщенные группы.

Частичное сшивание макромолекул полиэтилена происходит и под действием радиоактивных излучений. При этом повышается его теплостойкость, но снижаются эластичность и ударная вязкость. Без доступа кислорода полиэтилен устойчив до 290 °С. При 300—400 °С полиэтилен разлагается с образованием жидких и газообразных продуктов, содержащих очень мало этилена, что ука-* зывает на сложный характер деструкции, далекий от простой деполимеризации.

щениях. На практике, однако, нередко переводят линейные полимеры в сетчатые и разветвленные при помощи специальных реакций. Независимо от применяемого метода сшивания, как показали электронно-микроскопические исследования, поперечные химические связи могут возникать не только между макромолекулами, но и между более крупными (надмолекулярными) образованиями. Сшивание может быть осуществлено как за счет реакций функциональных групп или двойных связей в звеньях различных макромолекул, так и путем обработки линейных полимеров низкомолекулярными веществами («сшивающими агентами»). Первый метод используется при переводе резольных смол в резиты (с. 302), а также при получении сетчатых полимеров из поливинилового спирта (взаимодействия групп ОН из разных макромолекул), полиэтилена, поливинилхлорида и т. д. (действие у-облучения):

щениях. На практике, однако, нередко переводят линейные полимеры в сетчатые и разветвленные при помощи специальных реакций. Независимо от применяемого метода сшивания, как показали электронно-микроскопические исследования, поперечные химические связи могут возникать не только между макромолекулами, но и между более крупными (надмолекулярными) образованиями. Сшивание может быть осуществлено как за счет реакций функциональных групп или двойных связей в звеньях различных макромолекул, так и путем обработки линейных полимеров низкомолекулярными веществами («сшивающими агентами»). Первый метод используется при переводе резольных смол в резиты (с. 302), а также при получении сетчатых полимеров из поливинилового спирта (взаимодействия групп ОН из разных макромолекул), полиэтилена, поливинилхлорида и т. д. (действие у-облучения):

Процесс (ионный или радикальный) последовательного присоединения молекул мономеров с образованием в результате макромолекул полимеров, содержащих от 10 - I02 до 106 - 107 молекул мономера. Возможно образование макромолекул из мономерпых молекул одного типа — ^омопа.тыепц-зация, а также из различных мономеров (два и более) - сопо.пимеризация.

Для "сшитых" ковалентными связями макромолекул полимеров понятие "молекулярная масса" вообще теряет смысл: так, кусок пространственно-сшитого материала (например, эбонита, резины, кристалл алмаза) по сути - одна молекула.

Процесс (ионный или радикальный) последовательного присоединения молекул мономеров с образованигм в результате макромолекул полимеров, содержащих от 10 - 10" до 106 - 10! молекул мономера. Возможно образование макромолекул из мономерных молекул одного типа - гомополимери-зация, а также из различных мономеров (два и более) - сопопимеризация.

Структура макромолекул полимеров . 32

«Сшивание» макромолекул линейных полимеров ... 177

личными соединениями. Химические реакции, в результате проведения которых длина и форма цепи макромолекул заметно не изменяются, носят название полимера н алогичных превращений. Химические превращения в звеньях макромолекул полимеров затруднены вследствие малой подвижности цепей и возможности деструкции полимера в условиях реакции.

теплостойкость, но его упругость и эластичность уменьшаются. Таким образом, химический состав и структура макромолекул полимеров весьма разнообразны, что проявляется в неограниченном многообразии свойств полимерных соединений.

СТРУКТУРА МАКРОМОЛЕКУЛ ПОЛИМЕРОВ

Макромолекулы синтетических полимеров могут иметь линейную, разветвленную или пространственную структуру.

Линейные макромолекулы полимеров подобны длинным зигзагообразным или закрученным в спираль цепям, отдельные звенья которых многократно повторяются в цепи, имеют одинаковый состав и строение. Линейные макромолекулы не имеют ответвлений отцепи главных валентностей. Однако структура таких полимеров не исключает наличия замещающих групп в звеньях. Так, элементарное структурное звено полимеров производных полиэтилена может содержать до четырех одинаковых или различных заместителей:

Структура макромолекул полимеров




Материалов производится Матричных элементов Медицинских лабораторий Медленных процессов Медленным прибавлением Медленной перегонке Медленное прибавление Макроциклических полиэфиров Медленном перемешивании

-
Яндекс.Метрика