Главная --> Справочник терминов


Макромолекул происходит Реакцию проводили в условиях, обеспечивающих образование полимера со средним молекулярным весом 10 000 — 9.0 000. По окончании полимеризации многократно переосажденный полимер был подвергнут гидролизу. В растворимых продуктах гидролиза количественно определена и-бромбензойная кислота. Сопоставление молекулярного веса полистирола и количества п-бромбензой-ной кислоты, найденной в продуктах гидролиза, показало, что 80 — 90% концевых звеньев макромолекул полистирола ппепстав-ляют собой я-бромбензоатные группы

Если полимеризация стирола проводится в присутствии перекиси или гидропэрекиси бензоила, на обоих концах макромолекул полистирола образуются бензоатные группы, которые легко подвергаются гидролизу; в результате на концах полимерных цепей полистирола появляются гидроксильные группы

При длительном нагревании полистирола в вакууме в интервале 248—340° вначале наблюдается резкое падение удельной ударной вязкости полимера. Далее уменьшение ударной вязкости замедляется. По-видимому, деструкция макромолекул полистирола легко происходит по месту присоединения кислорода, которое ускоряется при повышении температуры. Время,минуты

Хлорметилирование полистирола и поли-а-метилстирола. Полистирол можно хлорметилировать монохлорметиловым эфиром в присутствии SnCl2 или 5пС14*. Монохлорметиловый эфир является одновременно растворителем полимера и продукта его хлорметилирования. Процесс развивается в двух направлениях: происходит образование полихлорметилстирола и соединение отдельных макромолекул полистирола метиленовыми поперечными мостиками:

Интересные блоксополимеры получены сочетанием блоков полистирола и полиметклметакрилата путем сополимеризации метил-метакрилата с бирадикалами макромолекул полистирола. Бирадика-лы образуются из макромолекул полистирола, на концах которых находятся гидроперекисные группы. Для образования таких макромолекул стирол полимеризуют в присутствии дигидроперекиси, например дигидроперекиси м-диизопропилбензола. При распаде дигидроперекиси образуются три типа радикалов инициирующих полимеризацию стирола:

Следовательно, на концах части макромолекул полистирола содержатся гидроперекисные группы. Если растворить такой полимер в метилметакрплате или другом мономере и эмульгировать раствор в воде, содержащей соли двухвалентного железа, то в результате взаимодействия ионов железа и гидроперекисных групп возникнут свободные валентности на концах макромолекул полистирола, к которым начнут присоединяться звенья мономера, образуя новые

По формуле (III. 17) рассчитывают невозмущенные размеры макромолекул полистирола, принимая постоянную Ф равной 2,84-1023. По формуле (III. 18) определяют коэффициент набухания макромолекулярных клубков полистирола в хорошем растворителе (циклогексан при 44°С). По формуле (III. 10) рассчитывают размер статистического сегмента полистирола, учитывая, что для карбоцепных виниловых полимеров длина связи С—С= = 0,154 нм и валентный угол ft = 109,5° (sin ft/2 = 0,816). Зная размер сегмента и проекцию (2/sin ft/2) одного мономерного звена на ось макромолекулы, можно определить число мономерных звеньев в сегменте по формуле

Задание. Сделать вывод о форме макромолекул полистирола в растворе; рассчитать невозмущенные размеры и сегмент для всех фракций полистирола (см. работу III. 1); объяснить, существует ли зависимость между размером сегмента и молекулярной массой полимера.

Метод основан на свойстве растворенных поверхностно-активных макромолекул полистирола адсорбироваться на поверхности ртутной капли и уменьшать величину полярографического максимума кислорода. Полярографический максимум получают на фоне 0,1 н. раствора Щ в бинарном растворителе бензол—метанол (1:3). В смеси бензол—метанол растворяется только ограниченное число молекул полистирола определенной молекулярной массы, остальная часть полимера выпадает в осадок. Растворенный полимер, адсорбируясь на поверхности ртути капельного электрода, уменьшает полярографический максимум. Согласно методике в электролитическую ячейку при измерениях вводят одинаковое количество полимера, поэтому при переходе от образцов с большей молекулярной массой к образцам с меньшей молекулярной массой в осадок выпадает все меньшая часть полимера. При этом концентрация полимера в растворе увеличивается, и степень подавления максимума возрастает.

Метод основан на свойстве растворенных поверхностно-активных макромолекул полистирола адсорбироваться на поверхности ртутной капли и уменьшать величину полярографических максимумов. Высокая чувствительность полярографических максимумов (при концентрации полимера в растворе 1—2% высота максимума снижается на 25—30%) позволяет качественно и количественно изучать растворимость полимеров.

Позднее представления о направляющей роли конформации образующейся молекулярной цепи в процессе полимеризации были перенесены на винильные мономеры. С этой позиции рассматривается влияние природы растворителя и температуры на стереоспецифичность полимеризации винильных соединений. Так, было показано, что полимеризация стирола в присутствии трифенилметилкалия в бензоле приводит к образованию атактического полистирола, а с тем же катализатором в гексане получается стереорегулярный полимер. С позиции так называемой спиральной полимеризации это объясняется большей устойчивостью спиральной конформации растущих макромолекул полистирола в плохом по сравнению с бензолом растворителе — гексане. Аналогичным образом объясняются образование стереорегулярного полистирола при полимеризации в присутствии бутиллития при — 30 °С в среде углеводородов и отсутствие стереоспецифичности при полимеризации стирола с этим катализатором при более высокой температуре. Такое новое направление в изучении механизма стереоспецифической полимеризации является чрезвычайно интересным, хотя для создания стройной концепции еще мало экспериментальных данных.

Этим термином обозначают химические реакции, при которых образование макромолекул происходит в результате соединения би- или олигофункциональных реагирующих веществ без отщепления прореагировавших групп. Для реакций этого типа характерно перемещение одного атома водорода на каждой стадии реакции, не наблюдающееся ни при полимеризации, ни при поликонденсации. До сих пор не известно ни одного полиприсоединения с образованием карбоцепей, но известны соответствующие реакции, приводящие к полимерным ацеталям, полимерным простым и сложным эфирам.

Рост цепи макромолекул происходит тем легче, чем большую поляризацию двойной связи вызывает заместитель. Поляризация двойной связи придает молекуле структуру диполя. Так, в несимметричной молекуле хлористого винила присутствие элек-трофильного атома хлора способствует созданию определенного дипольного момечта. Смещение электронной плотности в молекуле хлористого винила можно изобразить следующим образом:

имеет температуру плавления 127—128° и полностью растворяется: в кипящем н-гептане. В полимере сохраняется большое количество связей кремний—водород, поэтому при одновременном действии кислорода и повышенной температуры (70—80°) наблюдается превращение его в полимер пространственной структуры. Аналогичное изменение структуры макромолекул происходит и при действии на полимер воды или спирта.

По современным представлениям, гибкость макромолекул связана с изменением взаимного расположения смежных атомов цепи или звеньев. При этом звенья обладают набором устойчивых кон-формаций (поворотных изомеров), соответствующих минимумам потенциальной энергии. Изменение конформаций макромолекул происходит путем перехода звена от одних минимумов к другим через потенциальные барьеры. Чем выше потенциальный барьер, тем реже происходит переход от одного поворотного изомера к другому. При этом среднее время т*, характеризующее процесс перехода от одной равновесной конформаций к другой, тем больше, чем выше потенциальный барьер U, и тем меньше, чем больше интенсивность теплового движения, характеризуемая величиной kT (где k — постоянная Больцмана, Т — температура). Согласно статистике Больцмана, т* = Сехр [Uj(kT)] (здесь С — постоянная, равная кон-формационному времени в условиях, когда ?7 = 0 или Г-»-оо).

В системе изобутилен — BF3 ограничение длины образующихся макромолекул происходит главным образом в результате переноса протона от растущего макроиона к противоиону или передачи

Каждый метод фракционирования имеет свои преимущества и недостатки. Одним из недостатков метода фракционирования осаждением является вероятность механического захвата полимеров другого молекулярного веса при осаждении данной фракции. Метод растворения лишен этого недостатка. Однако он значительно продолжительнее, так как основная масса полимера находится не в растворителе и диффузия макромолекул происходит очень медленно.

Поликонденсациен называют ступенчатый процесс получения полимеров нз би- или полифункциональных соединений, в котором рост макромолекул происходит путем химического взаимодействия функциональных групп молекул мономеров друг с другом и с п-мерзми, накапливающимися в ходе реакции, а также молекул л-меров между собой. На концах образующихся макромолекул всегда присутствуют свободные функциональные группы Каждый акт взаимодействия при полнконденсацин сопровождается исчезновением у реагирующих частиц функциональных групп. Часто (но не всегда) поликонденсация сопровождается выделением низкомолскулярных продуктов реакции. В табл 2.6 указаны отличительные особенности поликонденсации и полимеризации. В общем виде реакция поликонденсацни бифункциональных мономеров описывается уравнением

Уменьшение степени полимеризации происходит в результате реакций, протекающих с разрывом связей в основной цепи полимера и называемых реакциями деструкции. Распад макромолекул происходит по различным механизмам, ависящнм от строения полимера и факторов, вызывающих деструкцию. Деструкция приводит к значительному изменению свойств полимерных материалов и изделий из них, сокращает сроки их экстуатации.

Количественно соотношение реакций деструкции и сшивания при облучонии оценивается но радиациошю-химическому выходу сшивания (С0) и деструкции (Сл), т. е. по числу актов разрыва или сшивания при поглощении 100 эВ энергии излучения. Наибольшим радиакионно-химическим выходом деструкции характеризуются целлюлоза (Сд>10), политетрафторэтилен (Сдл;5,5), полнизобутилен (СдЯ/5). Наиболее стойкие к радиационной деструкции полимеры имеют радиационно-химический выход в пределах до 1,5 (например, полистирол — 0,01, полипропилен — 0,8, полиэтилен — 1,0—1,5). Число разрывов, а также число образующихся поперечных связей прямо пропорционально дозе облучения и не зависит от интенсивности излучения. Поскольку разрыв макромолекул происходит по закону случая, молекулярная масса полимера после облучения при одной и тойжедозе не зависит от молекулярио-массового распределения и определяется только химическим строением полимера. Сред-нечисловая молекулярная масса АГп при радиолизе уменьшается пс закону

В результате механического воздействия на полимеры получаются механоэлсктреты Например, при сжатии полярных по лнмеров наряду с ориентацией макромолекул происходит их поляризация в направлении, перпендикулярном плоскости ориен тацин

макромолекул происходит за счет взаимодействия концевых групп образовавшихся




Материалов рассмотрим Медьорганические соединения Медицинской экспертизы Магнитного резонанса Медленная перегонка Медленное добавление Медленного изменения Медленном добавлении Медленном прибавлении

-
Яндекс.Метрика