Главная --> Справочник терминов


Многократным деформациям Однако различия в молекулярных параметрах этих каучуков проявляются в ряде динамических характеристик и, особенно, в морозостойкости резин, обусловливаемой микроструктурой полимерных цепей. В числе других отличий сопоставляемых вулканиза-тов следует отметить их более высокие по сравнению с резинами на основе СКД напряжения при удлинении 300% и более низкое теплообразование при многократных деформациях. С другой стороны, вулканизаты на основе СКД-2 характеризуются меньшим сопротивлением разрастанию трещин. Износостойкость всех типов резин практически одинакова и очень высока.

Обувь, изготовленная с применением термоэластопластов, отличается высоким качеством благодаря упругим свойствам, хорошей износостойкости и выносливости при многократных деформациях изгиба [30]. Кроме того, высокий коэффициент поверхностного трения термоэластопластов обеспечивает безопасность при ходьбе по льду и скользкой дороге [31, 32]. Термоэластопласты используются как добавки при изготовлении шин для легковых автомобилей, а также в автомобилестроении для изготовления автодеталей и звукоизоляционных мембран [33]. Отсутствие вулканизую-

Комплекс ценных свойств вулканизатов из СКПО указывает на перспективность его применения в резинотехнических изделиях, прорезиненных тканях, озоностойких покрытиях и других изделиях. Высокая прочность, эластичность, малые механические потери при многократных деформациях делает СКПО перспективным для применения также и в шинных изделиях.

НК хорошо растворяется в бензине, бензоле, хлорированных углеводородах, но нерастворим в спиртах. Обладает высокой клейкостью. Плотность НК — 910-930 кг/м3. Резины на основе натурального каучука имеют высокую эластичность, небольшие гистерезисные потери, низкое теплообразование при многократных деформациях, хорошие адгезионные и когезионные свойства. К недостаткам резин на основе НК относят их низкую масло- и химическую стойкость, старение под действием тепла, солнечного света, кислорода.

Под старением понимают самопроизвольное необратимое, обычно неблагоприятное, изменение свойств материала при хранении и эксплуатации, приводящее к потере им работоспособности. Старение является результатом воздействия на полимер энергетических (тепло, свет, радиация, механические напряжения и т. д.) или химических (кислород и другие химически активные вещества) факторов. В зависимости от того, какой из этих факторов является определяющим, различают тепловое, световое и другие виды старения. В эксплуатационных условиях на изделия обычно действуют одновременно несколько факторов, в результате чего через некоторое время происходит потеря их работоспособности. Практически важным случаем старения является одновременное воздействие механических напряжений и агрессивной среды, в частности утомление при многократных деформациях в активной среде, разрушение при трении и износе в агрессивной среде, химическая релаксация.

Оценку ряда свойств производят по эталонам (изменение цвета) или по условным шкалам (например, степень растрескивания). Так как большое количество резиновых изделий работает в атмосферных условиях при многократных деформациях, для испытания резин предложена специальная установка (рис. 6.29). На постоянную статическую деформацию образцов накладывают переменную во времени деформацию с амплитудой, близкой по величине к практически реализуемой в изделиях.

Рис. 6.29. Установка для испытаний резин на стойкость к озонному растрескиванию при многократных деформациях в атмосферных условиях:

Наряду с испытаниями на озонное растрескивание при статических деформациях для практики существенное значение имеет поведение резин в динамических условиях. Испытывать образцы целесообразно при несимметричном цикле нагружения, т. е. при постоянной статической деформации, на которую накладывается дополнительная периодическая. Испытания при многократных деформациях в озонированном воздухе рекомендуется проводить при одновременном действии деформаций растяжения: статической 10-50 % и динамической с амплитудой колебания 10-30 % при частоте 10 цикл/мин.

Кроме того, разрушение эластомеров при многократных деформациях ускоряется механически активированными химическими процессами деструкции полимерных цепей.

При переходе из высокоэластического состояния в стеклообразное происходит замена одного молекулярного механизма трения другим. В стеклообразном состоянии сила трения образуется из. вкладов взаимосвязанных адгезионной и объемно-механической' составляющих. Чем больше адгезионная составляющая, тем больше и объемно-механические потери, которые связаны с внутренним-трением в самом полимере. Низкотемпературный максимум при-: температуре ГМ2 существенно связан с механическими потерями? в самом полимере, так как при многократных деформациях при этой же температуре наблюдается максимум потерь, связанный с замораживанием подвижности малых участков полимерных цепей. При исследовании фрикционных свойств эластомеров в атмосфере при повышенных температурах на кривой F=f(T) (рис. 13.12) появляется еще высокотемпературный максимум, связанный с интенсификацией процессов окисления поверхностных слоев.

Все некристаллические полимеры дают температурную зависимость силы трения, аналогичную приведенной. Смещение этой зависимости по шкале температур вправо или влево обусловлено положением области стеклования того или иного полимера. Следовательно, адгезионный механизм трения эластомеров связывается с рассеянием энергии при многократных деформациях полимерных цепей, частично выходящих на поверхность в процессе непрерывного разрушения и восстановления физических связей между полимерными цепями и твердой гладкой поверхностью.

Вулканизаты из бутадиен-стирольных каучуков значительно меньше сохраняют значения сопротивления разрыву, относительного удлинения и сопротивления раздиру при повышенных температурах (100°С) и характеризуются менее высокой эластичностью, более высокими механическими потерями и повышенным теплообразованием по сравнению с вулканизатами из натурального каучука, а также уступают им по сопротивлению многократным деформациям изгиба, растяжения, сжатия и разрастанию трещин и текучести.

Термоэластопласты имеют высокие значения сопротивления разрыву, относительного удлинения, эластичности, сопротивления раздиру и стойкости к многократным деформациям, морозостойкости. Оптимальные физико-механические свойства достигаются в тех случаях, когда разность между температурами стеклования соответствующих блоков превышает 100°С.

Отсутствие двойных связей в основной цепи обеспечивает полимерам высокую стабильность при хранении без противоста-рителя, тепло-, кислородо- и погодостойкость и стойкость к действию УФ-лучей. Резины из акрилатных каучуков устойчивы также к многократным деформациям и разрастанию трещин и характеризуются высокой газонепроницаемостью [1]. Наличие по-

Заслуживают внимания данные рассмотрения зависимости молекулярно-массового распределения бифункционального препо-лимера различной полидисперсности и распределения цепей между узлами разветвления в реакциях образования трехмерных структур [49]. Весьма неожиданным оказалось влияние молекулярной массы в диапазоне (2,3-=- 5,0) -104 сегментированных эластомеров на температуру стеклования, сопротивление многократным деформациям, раздиру и гистерезис. Вероятно, причину аномального поведения этих систем следует искать в реструктурировании и упорядочении самих сегментов [50].

Сопротивление многократным деформациям литьевых уретановых эластомеров (политетрагидрофуран, толуиленднизоцнанат, 3,3'-дихлор-4,4'-диаминодифенилметан)

прочности (/, 2) и устойчивость к многократным деформациям (3, 4) волокон а. Волокноообразующие

/ - прочность ацетатного волокна; 2 - прочность поливинилхлоридного волокна; 3 -устойчивость к многократным деформациям поливинилхлоридного волокна; 4 - удлинение полиакрилонитрильного волокна; 5 - прочность полиакрилонитрильного волокна; а -прочность, Е - удлинение, х- число двойных изгибов

Вулканизаты из бутадиен-стирольных каучуков значительно меньше сохраняют прочность при растяжении, относительное удлинение и сопротивление раздиру при повышенных температурах (100 °С) и характеризуются меньшей эластичностью, более высокими механическими потерями при трении и повышенным теплообразованием по сравнению с вулканизатами из натурального каучука, а также уступают им по сопротивлению многократным деформациям изгиба, растяжения, сжатия, разрастания пореза и текучести. По водостойкости и газопроницаемости резины из бутадиен-сти-

Резины на основе акрилатных каучуков обладают повышенной стойкостью в среде серосодержащих углеводородов при высоких температурах. Они отличаются высокой стабильностью динамических свойств в процессе теплового старения. Им свойственна повышенная износо-, тепло-, кислородо-, озоностойкость; стойкость к маслам и смазкам; низкая газопроницаемость при высоких давлениях и температурах до 150 °С; устойчивость к многократным деформациям. Высока адгезия акрилатных каучуков к стеклу, алюминию, стали, хлопчатобумажным тканям, капронам. По теплостойкости акрилатные каучуки стоят несколько ниже, чем силоксановые и фторкаучуки, но значительно их дешевле. На основе акрилатных каучуков изготавливают: теплостойкие армированные транспортер-

Смеси, образующиеся из расслаивающихся в растворах полимеров, всегда микронеоднородны, что проявляется в мутности пле-йок. Поэтому, если изделие должно быть прозрачным, его нельзя изготовлять из полимеров, не совмещающихся в растворах. Если же прозрачность не обязательна, а микронеоднородные смеси имеют аномальные, но неплохие физико-мехапичесиие показатели, то для некоторых целей такие смеси пригодны. Так, микронеоднородные смеси каучуков не могут быть рекомендованы для изделий, подвергающихся многократном деформациям. Если же детали не подвергаются многократным деформациям, а смешение каучуков выгодно по каким-либо другим соображениям (повышение маело-или морозостойкости и др.), можно применять микронеоднородные резины, так как в процессе вулканизации пели разных каучуков настолько прочно связываются, что расслоения в мйкрообластях не ощущается, Макронеоднородные смеси вообще не могут применяться.

Резины слоя сжатия должны обладать высокой стойкостью к многократным деформациям, незначительным внутренним трением и, следовательно, малым теплообразованием, высокой тепло- и температуростойкостью, хорошей стойкостью к образованию и разрастанию трещин, максимальным модулем в поперечном направлении и низким — в продольном.




Молекулярной подвижности Молекулярной структуры Молекулярное взаимодействие Молекулярного взаимодействия Молекулярно кинетическая Молекулярно кинетической Молекулах аминокислот Молекулами формальдегида Молекулой исходного

-
Яндекс.Метрика