Главная --> Справочник терминов


Молекулярной структуры Поскольку обычно занятия по практическому использованию физических методов структурного анализа следуют после лекционных курсов по молекулярной спектроскопии, физическим методам исследования и после вводного практикума по спектроскопии, происхождение и основы теории молекулярных спектров, зависимости физических свойств от строения молекул и техника молекулярной спектроскопии студентам уже известны и здесь не излагаются.

Справочная литература по молекулярной спектроскопии (библиографическое описание)/Под ред. В. А. Коптюга, Новосибирск, 1975, 338 с.

ные случаи) можно ограничиться одним из этих видов молекулярной спектроскопии. При этом предпочтение, естественно, отдавалось технике, более доступной, простой и менее трудоемкой. Этими техническими причинами и определялась роль спектроскопии комбинационного рассеяния в органической химии за последние 50 лет.

решение вопроса о том, какой из этих видов молекулярной спектроскопии использовать для повседневной работы определяется главным образом доступностью соответствующей аппаратуры. В настоящее время лазерные спектрофотометры КР, выдерживающие по всем эксплуатационным параметрам конкуренцию с автоматическими двух-лучевыми инфракрасными спектрометрами, гораздо менее, распространены, чем последние, и малодоступны для многих химиков. Как правило, обзор*-ный ИК-спектр может быть получен в течение нескольких десятков минут в широком диапазоне частот на сравнительно дешевом и простом в обращении приборе. В этом случае спектроскопию КР привлекают лишь при необходимости получения дополнительных сведений о наличии (или отсутствии) структурных фрагментов, колебания которых совсем неактивны или слабо .проявляются в ИК-спектрах. Чаще всего это полностью и симметрично замещенные двойные связи С=С в олефинах, ацетилены со связью С^С в середине скелета, симметричные азосоединения RN=NR, перекиси R—О—О—R, дисульфиды R—S—S—R,

решение вопроса о том, какой из этих видов молекулярной спектроскопии использовать для повседневной работы определяется главным образом доступностью соответствующей аппаратуры. В настоящее время лазерные спектрофотометры КР, выдерживающие по всем эксплуатационным параметрам конкуренцию с автоматическими двух-лучевьши инфракрасными спектрометрами, гораздо менее, распространены, чем последние, и малодоступны для многих химиков. Как правило, обзорный ИК-спектр может быть получен в течение нескольких десятков минут в широком диапазоне частот на сравнительно дешевом и простом в обращении приборе. В этом случае спектроскопию КР привлекают лишь при необходимости получения дополнительных сведений о наличии (или отсутствии) структурных фрагментов, колебания которых совсем неактивны или слабо .проявляются в ИК-спектрах. Чаще всего это полностью и симметрично замещенные двойные связи С=С в олефинах, ацетилены со связью С=С в середине скелета, симметричные азосоединения RN=NR, перекиси R— О— О— R, дисульфиды R— S— S— R,

ные случаи) можно ограничиться одним из этих видов молекулярной спектроскопии. При этом предпочтение, естественно, отдавалось технике, более доступной, простой и менее трудоемкой. Этими техническими причинами и определялась роль спектроскопии комбинационного рассеяния в органической химии за последние 50 лет.

Справочная литература по молекулярной спектроскопии (библиографическое описание)/Под ред. В. А. Коптюга, Новосибирск, 1975, 338 с.

Поскольку обычно занятия по практическому использованию физических методов структурного анализа следуют после лекционных курсов по молекулярной спектроскопии, физическим методам исследования и после вводного практикума по спектроскопии, происхождение и основы теории молекулярных спектров, зависимости физических свойств от строения молекул и техника молекулярной спектроскопии студентам уже известны и здесь не излагаются.

7. Сайдов Г. В., Свердлова О. В. Практическое руководство по абсорбционной молекулярной спектроскопии. Л., изд-во ЛГУ, 1973. 86 с.

* Сайдов Г. В., Свердлова О. В. Практическое руководство по абсорбционной молекулярной спектроскопии. Изд-во МГУ, 1973.

Наиболее широкое распространение пол^чилл методы молекулярной спектроскопии (инфракрасная спектроскопия и й*етод спектров комбинационного рассеяния), а также метод ядерного магнитного резонанса (ЯМР). При помощи этих методов можно обнаружить различные функциональные группы, содержащиеся в полимерной цепи (например, галогены, нитрильные, карбонильные и другие группы, которые образуются в полимере в результате реакций окисления). Спектроскопические исследования позволяют определить тип соединения мономеров в цепи («голова к голове» или «голова к хвосту»), относительное содержание структур I—2 и 1—4 в пол неновых полимерах, наличие цис- и т/?*шоизомерии. По уменьшению интенсивности линий, соответствующих двойной связи С = С, и увеличению интенсивности линий, соответствующих ординарной связи С—С, можно судить о скорости пронесса полимеризации.

Важной составной частью работ по синтезу каучуков с необходимым комплексом свойств явились структурные исследования, направленные, с одной стороны, на изучение зависимости молекулярной структуры полимеров различных типов от условий их синтеза и, с другой, на установление -закономерностей влияния основных молекулярных параметров на физические, физико-механические и технологические свойства полимеров. Развитие этих исследований в значительной мере опиралось на труды А. П. Александрова, П. П. Кобеко, В. А. Каргина и П. Флори, в которых были сформулированы фундаментальные принципы строения молекулярных цепей и релаксационной природы механических и вязко-. эластических свойств полимеров,

Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их физическими и вязкоэластическими свойствами в широком интервале температур. При этом были установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния молекулярно-массового распределения на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования (см. гл. 2, 4).

Микроструктура полимерных цепей. Важными элементами молекулярной структуры синтетических каучуков, совокупность которых принято называть микроструктурой полимера, являются строение, пространственная конфигурация и характер взаимного расположения и чередования основных звеньев, образующих молекулярные цепи. г

В специальном случае разветвлений, сохраняющих на концах функциональные группы, имеющем принципиальное значение при исследовании молекулярной структуры низкомолекулярных полимеров, для определения степени разветвленности (равнозначной в этом случае функциональности цепи) могут быть применены следующие методы: сравнение среднечисленной молекулярной массы, определенной любым из коллигативных методов, с молекулярной массой, полученной по числу концевых групп [20]; определение зависимости точки гелеобразования от конверсии концевых групп , при реакции совместной поликонденсации исследуемого полимера с полифункциональным соединением известной функциональности— метод гель-точки [21, 22]; фракционирование по степени функциональности, основанное на зависимости адсорбции макромолекул на активных насадках от числа функциональных групп в молекуле [23].

Молекулярный подход к описанию эластомеров не исключает необходимости учета возникающих в ряде случаев различных надмолекулярных образований [6]. Надмолекулярная структура полимеров, в том числе эластомеров, проявляется, как известно, в трех разновидностях: в виде определенного рода упорядоченностей и морфологически обусловленных неоднородносгей в аморфном полимере; в виде кристаллических образований; и, наконец, в виде сегрегированных областей микроскопических либо субмикроско-пически.х размеров (доменов), возникающих в эластомерных композициях, а также в блок-сополимерах, а в некоторых случаях и в статистических сополимерах вследствие несовместимости компонентов либо участков цепи, различающихся по химической природе. Наличие и конкретная роль того или иного типа надмолекулярных образований зависит от химической природы и молекулярной структуры эластомеров, а также от условий их получения, переработки и эксплуатации.

Уравнение (10) с постоянным значением п применимо только для ограниченного интервала значений градиента или напряжения сдвига. Более полную картину течения полимера во всей доступной области изменения у, составляющей до 8 десятичных порядков, могут дать лишь эмпирически определяемые кривые течения — представленные в логарифмических координатах графики зависимости т либо т] от у. Конкретный вид графиков сильно зависит от молекулярной структуры эластомеров. .

Параметры молекулярной структуры промышленных каучуков «литиевой» полимеризации [В]

Молекулярное строение сополимеров типа СКЭП и СКЭПТ сильно зависит от типа применяемой каталитической системы и условий проведения процесса полимеризации. Типичные параметры молекулярной структуры промышленных каучуков СКЭП и СКЭПТ приведены в табл. 6.

Другие каучуки, получаемые методом растворной полимеризации. Методом полимеризации в растворе получают морозостойкие и бензомаслостойкие каучуки на основе циклических окисей — сополимеры окиси пропилена и аллилглицидилового эфира (СКПО), а также сополимеры окиси этилена и эпихлоргидрина [14, 15]. Эти каучуки выпускаются в промышленном масштабе. Предполагается, что для сополимеров типа СКПО ухудшение эластических свойств в области низких температур, по-видимому, связано с образованием стереорегулярных — изотактических блоков пропиленоксида и другими особенностями их молекулярной структуры. В случае сополимеров окиси этилена и эпихлоргидрина, где сомономеры входят в полимер в соизмеримых количествах (обычно 1:1), ухудшение эластических свойств может быть связано с образованием длинных блоков обоих сополимеров, которые способны к образованию кристаллической фазы.

Значительная разветвленность цепей каучуков эмульсионной полимеризации является одной из двух основных причин того, что их индекс полидисперсности Mw/Mn значительно превышает 2— величину, характерную для наиболее вероятного ММР [34]. Вторая причина этого -связана со спецификой расхода регулятора молекулярной структуры. Даже в отсутствие реакций разветвления постепенное изменение по ходу полимеризации отношения концентрации регулятора к концентрации мономера в зоне реакции приводит к расширению ММР каучука. Этот эффект выражен тем сильнее, чем выше скорость расхода регулятора. Использование сравнительно медленно расходующегося регулятора позволяет поддерживать ММР каучука достаточно узким [35, 36]. С другой стороны, такой же эффект может быть достигнут и путем введения быстро расходующихся регуляторов (например, диизопропил-ксантогендисульфида) порциями по ходу процесса [35, 36]. Оба эти принципа регулирования используются при промышленном синтезе отечественных бутадиен-стирольных и бутадиен-нитрильных каучуков.

В некоторых работах приводятся слишком большие (>10) значения индекса полидисперсности каучуков эмульсионной полимеризации [12, 37, 38]. Появление аномально высоких значений Mw/Mn обусловлено в большинстве случаев наличием в полимере микрогеля. Молекулярная масса микрогеля равна нескольким десяткам миллионов, поэтому даже незначительное содержание его в полимере сильно увеличивает Mw. Возникновения микрогеля и макрогеля далеко не всегда удается избежать даже при использовании регулятора молекулярной структуры. Рыхлый микрогель, а в некоторых случаях и макрогель, содержатся в бутадиен-нитрильных каучуках [33, 38]. Микрогель, содержащийся в бутадиенстирольном каучуке типа 1502, подробно описан в работе [39].




Магистральным газопроводам Максимально допустимых Максимально возможный Максимально возможного Максимальную активность Максимуме поглощения Мальтазной активности Маленькими кусочками Малиновое окрашивание

-
Яндекс.Метрика