Главная --> Справочник терминов


Морфологические структуры ниях, меньших прочности образца на 50 %; для других образцов предельные значения молекулярного напряжения достигаются лишь при напряжениях, близких к разрушающим [16]. На рис. 8.4 представлены результаты Веттегреня и др. [16], соответствующие максимальным значениям напряжений, действующих на молекулярные сегменты, для трех различных по морфологии образцов ПП и ПЭТФ. Видимо, неназванные морфологические особенности не влияют на предельные значения напряжения; в образцах / максимальная концентрация молекулярных напряжений (tym/a) больше, чем в образцах 2 или 3, но, по-видимому, все три вида образцов чрезвычайно однородны, о чем свидетельствует такой факт, как соответствие максимального значения tym максимуму а. Аналогичные результаты получены в работе [5], когда искажение полосы (975 см-1 ПП) сильно вытянутого образца (Я = 10) намного меньше, чем образца, вытянутого до значения К = 5.

на несколько сотен процентов. Даже поверхность нестабильно растущей трещины (область IV, увеличенная на рис. 8.32 и 8.33) является не ровной, а пластически деформированной. Морфологические особенности поверхностных зон разрушения явно указывают на то, что начало роста трещины, даже при ударном нагружении, происходит не просто путем перерезания молекулярных цепей, которые случайно оказываются на пересечении с плоскостями наибольших растягивающих напряжений. Из-за ограниченной поперечной передачи нагрузки между неориентированными, несшитыми цепями (гл. 5) пластическая деформация всегда предшествует возможному разрыву цепи. С учетом уже рассмотренных феноменологических представлений о разрушении при ударе можно сказать, что сопротивление

Морфологические особенности образования трещин при ползучести изучались также Штокмайером [118]. Применяя трудоемкий метод соскабливания, он превратил целые секции трубы в тонкие пленки толщиной до 0,06 мм (рис. 8.37). Стенки труб из ПЭНП превращались в пленки площадью 0,9 м2, а затем с помощью сканирующего микроскопа выявлялись дефекты и неоднородности материала (рис. 8.38). Неоднородности могли быть обнаружены в каждой трубе и связывались с несовершенством смешивания ПЭНП с черной сажей [118].

9.3. Молекулярные и морфологические особенности

—• молекулярные и морфологические особенности распространения 390

9.3. Молекулярные и морфологические особенности распространения трещин.. 390

Выбор технологического режима смешения может производиться и на основании данных, полученных на модельных установках. Однако таким опытам, по нашему мнению, должно предшествовать экспериментальное определение некоторых параметров, отражающих структурно-морфологические особенности полимера, в частности удельной и морфологической неоднородности.

Филипп Буркарт, Вебнер Петер (18) провели аналитические исследования с целью оценки пригодности для ацетилирования неочищенного лиита и хлопковых целлюлозных материалов. Ацетилирование проводилось в среде метиленхлорида с катализатором H,SO4 В целлюлозе определялись: а-целлюлоза, лигии, пентозаны, зольность (Са, ;е), наличие карбоксильных и карбонильных групп, медное число, число каппа, степень белизны, светопопюшение 4%-го раствора целлюлозною материала в 72%-м растворе Н,50Л распределение волокон по длине, число посторонних частиц. Установлено, что качество триацетата целлюлозы определяется количеством примесей в хлопковом лиите (коробочки, стебли хлопчатника, сорняки) Протеины, пектиновые вещества и воски на показатели качества не влияют; пак как они почти полностью удаляются при облагораживании хлопкового волокна. Морфологические особенности (пабухаемость, степень упорядоченности и т.д.) по мнению данных авторов не влияют на качественные показатели триацетата целлюлозы.

Выше мы рассмотрели особенности топологической структуры сетчатых полимеров. Следующий уровень структурной организации полимера — взаимное расположение его цепей, количественными характеристиками которого могут служить уровень межмолекулярного взаимодействия и степень упорядоченности. Первая характеристика выражается через величины свободного объема и плотности упаковки, вторая проявляет себя через морфологические особенности полимера. Кратко рассмотрим основные особенности надмолекулярной организации сетчатых полимеров.

К сожалению, в настоящее время неизвестны более детальные сведения о влиянии характера топологической организации сетчатого полимера (нетолько брутто-количества узлов, но и характера их распределения, количества циклов различного размера и строения и т. п.) на морфологические особенности сетчатых полимеров. Такие работы на сегодняшний день отсутст-вуют, однако подобная информация была бы весьма полезна, так как, с одной стороны, она дала бы возможность найти более тесную связь между топологической и надмолекулярной структурой сетчатого полимера, с другой — на стадии синтеза полимера более целенаправленно управлять ими. Из рассмотренного выше материала очевидно, что подобные исследования представляют интерес в первую очередь для сетчатых полимеров с низкой концентрацией узлов сетки, в которых могут реализоваться различные морфологические структуры. С повышением концентрации узлов сетки полимеров возможность регулирования их морфологии отходит на задний план;, для густосетчатых полимеров эта задача оказывается уже в принципе невыполнимой, так как для последних характерна лишь единственная надмолекулярная организация — глобулярная.

Морфологические особенности

Прежде чем охарактеризовать роль молекулярных цепей в ударном нагружении, рассмотрим разрушение полимеров, считающихся жесткими в нормальных условиях (например, ПЭВП, ПВХ, ПП, ПА). Расщепление материала трудно получить путем изгиба, оно наблюдается лишь на надрезанных образцах с низким отношением (LS/D) или при высокой скорости нагружения (удар). В образцах ПЭВП с чрезвычайно высоким значением молекулярной массы (Mw?> 106 г/моль) совсем не происходит расщепления материала. Поверхность разрушения, показанная на рис. 8.25, была получена Гаубе и Каушем [106] путем ударного нагружения при 20°С стандартного бруска ПЭВП с ножевым надрезом. На поверхности хорошо видны морфологические структуры трех видов:

Ослабление при ползучести присуще не только термопластичным материалам. В качестве примера в гл. 1 приведены морфологические структуры разрушения при ползучести труб из ПВХ, подверженных воздействию различных по величине напряжений. При достаточно высоких напряжениях (0„ = = 50 МПа) имеет место небольшая деформация ползучести, а ослабление труб из ПВХ оказывается хрупким. В таком случае говорят о прочностной долговечности при хрупком разрушении (рис. 1.1). При умеренных значениях напряжения (42 МПа), действующего продолжительное время, трубы подвергаются сильной пластической деформации, т. е. в таком случае говорят о деформационной долговечности при вынужденной эластичности (рис. 1.2). При более низких значениях напряжения (а„<20 МПа) ослабления либо не наблюдается совсем в течение времени проведения эксперимента, либо действует конкурирующий механизм образования трещины при ползучести (рис. 1.3).

сложных структур. Эти морфологические структуры мож-

Во всех этих случаях поликарбонат выдерживают в течение определенного времени в таком состоянии, когда небольшие количества растворителя увеличивают подвижность макромолекул до величины, при которой могут формироваться кристаллы. В этот момент начинается образование элементарных (ленты, фибриллы) и более сложных структур. Эти морфологические структуры можно наблюдать при помощи обычного и электронного микроскопов [2, 5].

Второй весьма важной особенностью микрогетерогенных образований ПВС является одновременное сосуществование целого набора морфологических структур. На рис. 5 приведено сосуществование утолщенных дендритных образований и глобул. По-видимому, всякое состояние полимерных растворов с микрогетерогенными образованиями характеризуется своим распределением по типам и количеству морфологических структур. Концентрация этих структур в каждый момент времени определяется соотношениями величин констант скоростей взаимных переходов и степенью приближения к равновесному состоянию. Вполне вероятно, что различные морфологические структуры являются псевдоравновесными и их образование в первую очередь определяется перестройкой системы водородных связей, связанной с электростатическим отталкиванием ионогенных групп полимерных цепей. Поэтому естественно, что рН и другие условия приготовления растворов ПВС определяют возможность возникновения тех или иных псевдоравновесных морфологических структур.

2. Показано, что в зависимости от концентрации, температуры и других условий образуются различные морфологические структуры: глобулы, фибриллы и промежуточные формы, обратимо переходящие друг в друга. Эти различные структуры могут сосуществовать в растворах поливинилового спирта одновременно.

исследовании ассоциата* оказалось, что при взаимодействии молекул ПВС и ПМАК весьма интенсивно протекает процесс структурообразования, который приводит к самопроизвольному возникновению микрофибрилл (рис.4). Количество фибрилл, их размеры и форма существенно зависят от концентрации и рН растворов. Наблюдаются разнообразные морфологические структуры ассоциата: глобулы, дендриты, нити и др., что говорит о различных типах упорядоченности, вероятно обусловленной изменениями конформации молекул полимеров.

Морфология редкосшитых полимеров мало отличается от таковой для линейных полимеров [152—162]. В редкосшитых сетчатых полимерах могут быть реализованы все морфологические структуры (глобулы, сферолиты, кристаллиты, фибриллы и т. п.), характерные для линейных полимеров. Однако по мере увеличения концентрации узлов сетки наблюдаются прогрессирующие затруднения для образования хорошо упакованных морфологических структур с высокой степенью упорядоченности межузловых цепей, так что в конечном счете для густосетчатых полимеров (концентрация узлов сетки ~1021 узлов/см3) подобные структуры вырождаются вовсе и фундаментальным структурным элементом для густосетчатых полимеров являются исключительно глобулы [152, 153, 162—165]. Все попытки изменения характера морфологической структуры таких полимеров за счет широкого-варьирования химического строения исходных реагентов — олигомеров и отверждающих агентов, за счет изменения условий образования полимера или воздействия на уже сформированный полимер тепловых и механических полей не приводят к изменению морфологии густосетчатого полимера: во-всех случаях она остается глобулярной, варьируют в некоторой степени лишь размеры глобул.

К сожалению, в настоящее время неизвестны более детальные сведения о влиянии характера топологической организации сетчатого полимера (нетолько брутто-количества узлов, но и характера их распределения, количества циклов различного размера и строения и т. п.) на морфологические особенности сетчатых полимеров. Такие работы на сегодняшний день отсутст-вуют, однако подобная информация была бы весьма полезна, так как, с одной стороны, она дала бы возможность найти более тесную связь между топологической и надмолекулярной структурой сетчатого полимера, с другой — на стадии синтеза полимера более целенаправленно управлять ими. Из рассмотренного выше материала очевидно, что подобные исследования представляют интерес в первую очередь для сетчатых полимеров с низкой концентрацией узлов сетки, в которых могут реализоваться различные морфологические структуры. С повышением концентрации узлов сетки полимеров возможность регулирования их морфологии отходит на задний план;, для густосетчатых полимеров эта задача оказывается уже в принципе невыполнимой, так как для последних характерна лишь единственная надмолекулярная организация — глобулярная.

Таким образом, приведенные выше данные четко свидетельствуют о том,, что как межмолекулярное взаимодействие цепей, так и образуемые при этом морфологические структуры весьма чувствительны к связыванию цепей между собой, т. е. к их сшиванию. Детальный механизм этого влияния в настоящее время еще не установлен, однако можно думать, что возмущающее действие узлов сетки должно в первую очередь сказываться на конформа-циях ближайших атомов, т. е. на первичной молекулярной структуре цепи. Такого рода работы только начинают развиваться, однако один пример влияния сетки на конформацию некоторых групп в настоящее время уже известен [188]. При исследовании ИК-спектров сетчатых полимеров, полученных радикальной полимеризацией диметакрилата триэтиленгликоля (ТГМ-3) было установлено, что в спектре этих полимеров наблюдается только один поворотный изомер группы —С(0)—О—С — тге/жкс-конформер, а полоса цис-изомера вообще отсутствует, тогда как в линейном аналоге этого сетчатого' полимера — атактическом полиметилметакрилате — эта группа существует в двух конформациях: в более устойчивой цис- и менее устойчивой транс-конформации. Следует отметить, что такая ситуация, характеризующаяся единственно возможной формой реализации поворотной изомерии сложно-эфирной группы в исследованном сетчатом полимере, наблюдается при различных условиях его образования (температура, добавки различных растворителей), т. е. это явление связано именно с сетчатым характером полимера и не зависит от способа получения сетки.

Было также установлено, что толщина кристаллов линейного полиэтилена в виде плоских пластинок, выращенных из разбавленных растворов при температуре около 80 °С, составляет величину порядка 100 А. Изменяя условия кристаллизации (температуру, концентрацию полимера в растворе, природу растворителя и т. п.), можно получить различные морфологические формы кристаллов [7]. Как правило, эти морфологические структуры не имеют форму плоских пластинок, как это видно из наблюдений их объемной конфигурации с помощью метода фазово-контрастной микроскопии [8]. Кроме того, при кристаллизации в идентичных условиях образуются различные (хотя и в чем-то сходные) морфологические структуры. Примеры таких кристаллических образований показаны на рис. III .8— III. 11. На рис. II 1.8 представлена наиболее типичная морфологическая форма кристаллизации при сравнительно низких (70—80 °С) температурах, представляющая собой полую пирамиду.




Математическая обработка Материалы используемые Материалы полученные Материалам относятся Материала определяется Материала производится

-
Яндекс.Метрика