Главная --> Справочник терминов


Наполнителя происходит Активный наполнитель резко повышает сопротивление разрыву резин на основе синтетических каучуков в высокоэластическом состоянии (СКВ, СКС-30 и др.)- На свойства резин в стеклообразном состоянии наполнитель оказывает противоположное влияние. Так, при температурах, при которых каучук СКВ находится в эла-Стичсском состоянии, прочность ненаполненной резины на его основе составляет 14 кГ/см^, наполненной (60 вес. ч. печной сажи) — 170 кГ/см?. Ниже температуры стеклования при введении наполнителя значение ас несколько увеличивается и хрупкая прочность понижается. Температура хрупкости повышается примерно па41°С. Если без наполнителя интервал вынужденной эластичности составляет 73° С, то с наполнителем он сужается до 32° С. Подобный эффект введения наполнителя наблюдается и в резине на основе бутадиен-стиралыюго каучука. Следовательно, при изготовлении резин, предназначенных для эксплуатации в условиях низких температур, введение в mix большого количества наполнителя нежелательно. Таким образом, вопрос о дозировке наполнителя должен решаться с учетом условий работы изделия.

Активный наполнитель резко повышает сопротивление разрыву резин на основе синтетических каучуков в высокоэластическом состоянии (СКВ, СКС-30 и Др.)- На свойства резин в стеклообразном состоянии наполнитель оказывает противоположное влияние. Так, при температурах, при которых каучук СКВ находится в эла-Сичсском состоянии почность ненаполненной езины на его ос-

время трудно дать количественное определение свободного • объема в наполненном полимере даже по простой схеме, подобной приведенной на рис. 4.7, так как неизвестно влияние наполнителя на занятый объем. Однако по данным Ю. С. Липатова [4] свободный объем, определенный по уравнению ВЛФ, действительно возрастает при наполнении. Приведенные выше данные позволяют с уверенностью сказать, что наполнитель оказывает сильное влияние на весь объем полимера, что, вероятно, в значительной мере объясняет наблюдаемые эффекты. Такой подход позволяет качественно объяснить такие экспериментальные факты, приводимые в различных работах, как малая зависимость смещения Гс от размера частиц, отсутствие или снижение эффектов при отсутствии адгезии и др.

Активный наполнитель резко повышает сопротивление разрыву резин на основе синтетических каучуков в высокоэластическом состоянии (СКВ, СКС-30 и Др.)- На свойства резин в стеклообразном состоянии наполнитель оказывает противоположное влияние. Так, при температурах, при которых каучук СКВ находится в эла-Стичсском состоянии, прочность ненаполненной резины на его основе составляет 14 кГ/см?, наполненной (60 вес. ч. печной сажи) — 170 кГ/см2. Ниже температуры стеклования при введении наполнителя значение ап несколько увеличивается и хрупкая прочность понижается. Температура хрупкости повышается примерно на 41° С. Если без наполнителя интервал вынужденной эластичности составляет 73° С, то с наполнителем он сужается до 32° С. Подобный эффект введения наполнителя наблюдается и в резине на основе бутадиен-стирольпого каучука. Следовательно, при изготовлении резин, предназначенных для эксплуатации в условиях низких температур, введение в них большого количества наполнителя нежелательно. Таким образом, вопрос о дозировке наполнителя должен решаться с учетом условий работы изделия.

Наполнитель оказывает значительное влияние на химическую стойкость полиэфирных материалов. Так, свойства мастики на основе смолы ПН-1 при наполнении графитом изменяются в агрессивных средах значительно меньше, чем наполненные коксом (см. табл. 111.37 и 111.38),

Дилатометрия дисперснонаполненных композитов имеет свои особенности. Первая — наполнитель оказывает аддитивное действие на тепловое расширение композита; вторая — если физическое состояние наполнителя не изменяется в температурном диапазоне, принятом для полимерной матрицы, то его влияние проявляется при испытании равномерно и может считаться фоном; третье — для оценки теплового расширения полимерной матрицы из результа-

Таким образом, наполнитель оказывает специфическое воздействие на процесс кристаллизации. Сравнение констант п при кристаллизации из расплава и высокоэластического состояния позволяет предположить, что введение в полимер даже небольшого количества наполнителя приводит к действию, эквивалентному переводу системы из расплава в "высокоэластическое состояние, что сказывается на механизме кристаллизации и ее кинетических параметрах.

Данные о морфологии быстрокристаллизующегося полихлоро-прена показали, что на границе раздела с наполнителем происходит ориентация кристаллических образований, возникновение которых обусловлено высокой плотностью зародышей кристаллизации и возможностью роста кристаллических структур только в направлении, перпендикулярном поверхности раздела. При этом наполнитель оказывает на кристаллизацию действие, аналогичное созданию дополнительного напряжения, в поле которого протекает кристаллизация [137].

нается заметное изменение объема образцов. Коэффициент Пуассона снижается с 0,5 для ненаполненных образцов при всех удлинениях (до 200%) до 0,24 при содержании наполнителя около 60% (об.). Было показано также, что после снятия напряжения не происходит мгновенного восстановления адгезионных связей. . Вопрос о влиянии наполнителей на термомеханические свойства был детально изучен в ряде работ [279—281]. Так, при исследовании наполненных стеклянным порошком и стеклянными волокнами пленок полистирола, поливинилацетата, полиметилмет-акрилата и других полимеров были получены результаты, в основном аналогичные уже описанным. Установлено различие во влиянии порошкообразных и волокнистых наполнителей на температуры переходов на термомеханических кривых: волокнистый наполнитель уже при содержании 2,5% может изменять температуру размягчения полимера на десятки градусов, Гт при этом не меняется, в то время как при таких же концентрациях порошкообразный наполнитель оказывает сильное влияние' на Гт и незначительное — на температуру размягчения. Различия во влиянии наполнителей того и другого типа объясняются тем, что волокнистый наполнитель вследствие анизодиаметричности его частиц обладает гораздо большей склонностью к образованию собственных структур в среде полимера, чем порошкообразный. Это структурирование влияет на температуру размягчения и определяет во многом деформационное поведение композиции. При этом прочность структур зависит от прочности прослоек полимера между частицами, определяемой характером взаимодействия между полимером и поверхностью.

Структурообразование в полимерах и в их растворах при введении наполнителей является весьма важным фактором, определяющим усиливающее действие наполнителей в полимерах. Эту проблему можно рассматривать, во-первых, с точки зрения образования в полимере структуры в результате взаимодействия частиц наполнителя друг с другом и, во-вторых, с точки^зрения структуро-образования в самом полимере в присутствии наполнителя. Последнее особенно важно в тех случаях, когда содержание наполнителя в системе относительно невелико и он сам не может образовывать сплошной структуры. При этом, однако, наполнитель оказывает влияние как на процесс формирования структуры в граничных слоях и в объеме полимера, так и на протекание реакций отверждения.

Молекулярное взаимодействие между полимером и наполнителем может протекать по различным механизмам. Так, между активными функциональными группами эпоксидной смолы и наполнителя происходит химическое взаимодействие с образованием прочных химических связей. Кроме того, наблюдается существование всего спектра физических связей — от ван-дер-ваальсовых до водородных, обусловливающих явления смачивания, адгезии и образования межфазных слоев [1, 3, 4, б, 20, 5а]. Большое значение при этом имеет состояние поверхности наполнителя, которая, как было сказано выше, обычно покрыта адсорбированными молекулами воды и других соединений, затрудняющих смачивание и взаимодействие полимера с наполнителем. Несмотря на важность процессов межфазного молекулярного взаимодействия в наполненных полимерах, многие аспекты этих процессов еще мало исследованы, и в литературе существуют различные мнения, подробно рассмотренные в работах [3—5, 15, 59].

Это заключение согласуется с тем фактом, что для солевого и саженаполненного перекисного вулканизатов СКН-26 величины у одного порядка, а значения структурно-чувствительного коэффициента L равны. Эти вул-канизаты сходны в том отношении, что на поверхности раздела с частицами дисперсной фазы (частицами вулканизующего агента или наполнителя) происходит ориентация каучука. Вследствие этого наблюдается значительная ориентация цепей при растяжении. Вместе с тем, если при растяжении саженаполненного вулкани-зата решающим для ориентации цепей является диссипация напряжений при локальном разрушении адсорбционных связей каучук — технический углерод, то в гетерогенной солевой сетке адсорбция неполярного каучука на полярной поверхности частицы полисоли вряд ли значительна (во всяком случае заметно меньше, чем на поверхности малополярных частиц технического углерода). Поэтому главной причиной1 сохранения ориентационного слоя являются химические межфазные связи.

Исследование вулканизации каучуков общего и специального назначения в присутствии катионоактивных ПАВ — соединений ряда алкамонов, а также бисчетвер-тичных аммонийхлоридов продолжено в работах [97]. Проведенные физико-химические и технологические исследования показали, что активирующая способность изученных ПАВ определяется их структурой, и уменьшение, длины углеводородного радикала у катиона приводит к ее снижению, а также в значительной степени зависит от типа ускорителей, применяемых в резиновых смесях, и дозировки вулканизующей группы. Наиболее эффективными эти катионные ПАВ оказались в смеси с тиазоловыми ускорителями. Полагают, что сокращение оптимальной продолжительности вулканизации в некоторых случаях в 2—4 раза в зависимости от типа ускорителя и наполнителя происходит за счет возрастания скорости сшивания, а не уменьшения индукционного периода. Обнаруженный авторами методом ИКС факт взаимодействия алкамонов с каптакеом с образованием N-замещенного производного каптакса объясняет повышенную эффективность этих катионных ПАВ с тиазоловыми ускорителями, но не дает оснований для столь общих выводов относительно влияния катионных ПАВ на кинетику вулканизации эластомеров:

На глубоких стадиях реакции, вероятно, действует другой механизм, также приводящий к увеличению дефектности сетки. Из-за адсорбции растущих цепей полимера на поверхности наполнителя происходит значительное уменьшение их подвижности, также отражающееся как на скорости роста, так и на скорости обрыва. Все эти факторы способствуют возникновению более дефектной структуры трехмерной сетки.

Данные, полученные при исследовании релаксационных процессов, протекающих в наполненных полимерах (см. гл. III), показывают, что в присутствии" наполнителя происходит некоторое ограничение подвижности молекул полимера в поверхностном слое на границе раздела, обусловленное взаимодействием молекул с поверхностью наполнителя. Совершенно очевидно, что поскольку при этом происходит изменение распределения межмолекулярных сил, то оно отражается на плотности упаковки макромолекул.

Экспериментальные данные показали, что при одном и том же значения gilgz значение Д52> уд увеличивается с ростом содержания наполнителя в полимере, т. е. парциальная удельная энтропия полимера возрастает. Казалось бы, что из-за ограничения подвижности полимерных цепей при введении наполнителя сорбция и энтропия системы должны были бы уменьшаться, однако при увеличении содержания наполнителя происходит увеличение рыхлости упаковки молекул, что приводит к росту и сорбции, и энтропии (при более рыхлой упаковке число вариантов расположения молекул больше). Надо иметь в виду, что вычисления энтропии полимера проведены для очень больших массовых долей полимера. В этом случае подвижность цепей не является главным фактором, определяющим сорбцию при смешении полимера и растворителя в области высоких относительных давлений паров, и решающее влияние на сорбцию оказывает плотность упаковки. Таким образом, вычисленные значения изменения парциальной энтропии полимера при разных содержаниях наполнителя могут служить для количественной оценки плотности упаковки наполненных полимеров.

верхности наполнителя происходит аДСОрбЦИЯ МОЛекуЛ МЗ- Рис. I. \\. Зависимость Мс от содержания на-

С другой стороны, возможно, что при адсорбции молекул мак-родиизоцианата происходит их ориентация, упорядочение под дей* ствием 'твердой поверхности, причем по мере увеличения содержания наполнителя этот процесс становится более интенсивным. Ориентация молекул облегчает формирование трехмерной структуры, что характеризуется постепенным уменьшением Мс с ростом содержания наполнителя (см. рис. 1.11). Одновременное протекание указанных процессов, возможно, и обусловливает немонотонность в изменении М0 с ростом содержания наполнителя. Это вполне согласуется с данными по физико-механическим свойствам наполненных полиуретанов.

Один из способов получения армированных и наполненных полимеров — проведение полимеризации или поликонденсации в присутствии волокнистого или дисперсного-чнаполнителя с сильно развитой поверхностью. В ходе формирования трехмерной сетки полимера процесс полимеризации в присутствии наполнителя протекает иначе, чем при отсутствии границы раздела. Наличие сильно развитой поверхности наполнителя на начальной стадии реакции может приводить к.возрастанию скорости обрыва реакционных цепей на поверхности наполнителя, в результате чего густота сетки уменьшается и сетка становится более дефектной [102]. Очевидно, что поверхность наполнителя в этом случае играет роль своеобразного ингибитора при формировании сетки. На более глубоких стадиях, по-видимому, действует уже другой механизм, также приводящий к росту дефектности. Вследствие адсорбции растущих цепей полимера на поверхности наполнителя происходит значительное уменьшение их подвижности, отражающееся как на скорости роста, так и на скорости обрыва. Все эти факторы способствуют возникновению более дефектной структуры [103].

факторы предопределяются природой поверхности нанолншеля и его концентрацией. При малых содержаниях наполнителя скорость кристаллизации увеличивается, поскольку частицы наполнителя играют роль зародышей кристаллизации, с увеличением же концентрации наполнителя происходит торможение этого процесса, поскольку преобладающим становится увеличение вязкости системы. Таким образом, кинетика кристаллизации наполненного полиуретана описывается уравнением Аврами только на начальных стадиях, причем с дробным значением п. Скорость кристаллизации проходит через максимум при малых степенях наполнения, а затем постепенно с ростом количества наполнителя становится ниже скорости кристаллизации полиуретана.

Детальное исследование влияния взаимодействия полимера с неактивными наполнителями на температуры перехода было проведено в работах Куминса [61, 175] на примере сополимера винил-хлорида и винилацетата, пигментированного различными количествами [до 19% (об.)] рутила (ТЮ2). Температуры стеклования определяли дилатометрически. В исходном полимере наблюдаются две температуры перехода — при 30 и 77 °С. При объемной доле ТЮ2 0,01 и 0,03 происходит снижение верхней температуры на 4 и 15 °С соответственно, после чего верхняя температура перехода перестает обнаруживаться и появляется новая область перехода при 48—51 °С. Эти данные были объяснены тем, что при малых содержаниях наполнителя адсорбция ацетатных групп на поверхности уменьшает взаимодействие цепей друг с другом, вследствие чего их подвижность несколько увеличивается и температура перехода снижается до температуры перехода, определяемой движением ацетатных групп. При дальнейшем повышении содержания наполнителя происходит увеличение числа сорбированных поверхностью групп, ограничение подвижности цепей и в результате этого— повышение температуры перехода.




Наблюдайте образование Насыщения реакционной Насыщенный углеводород Насыщенные углеводороды Насыщенных карбонильных Насыщенных углеводородах Насыщенной хлористым Насыщенного соединения Насыщенном абсорбенте

-
Яндекс.Метрика