Главная --> Справочник терминов


Нарушение регулярности В то время как обычные изомеры самопроизвольно не переходят один в другой (например, р-оксимасляная кислота не превращается в а-оксимасляную), таутомеры всегда существуют совместно и находятся в состоянии динамического равновесия. В зависимости от условий опыта, вызывающих нарушение равновесия, одна из таутомерных форм способна самопроизвольно переходить в другую.

Сильная головная боль, нарушение равновесия, рвота. Посинение губ

Однако наблюдаемое при этом нарушение равновесия в насы-

шее нарушение равновесия при высоких оборотах сильно сказывается

десятков минут. Необходимо помнить, что любое нарушение равновесия

условий опыта, вызывающих нарушение равновесия, одна из таутом<;

Сильная головная боль, нарушение равновесия, рвота. Посинение губ

Этот вопрос можно решить только в самом общем виде путем сопоставлений. Искажение валентных углов — их увеличение в главной цепи и, возможно, их уменьшение между заместителями в зависимости от их природы (вида атомов или групп, их размеров и т. д.), как и всякое нарушение равновесия, должно привести к возникновению напряженного, активного состояния. Если считать положительные и отрицательные искажения приблизительно равноценными по эффективности активации, то можно привести типичные примеры повышения химической активности соединений по мере увеличения деформации валентных углов. Например, в случае циклопарафинов, чем больше деформированы валентные углы при замыкании цикла, тем более химически активны эти углеводороды, тем выше для них значение теплоты сгорания и тем предпочтительнее протекают реакции присоединения с разрывом кольца, а не замещения [109]. Так, циклопропан, в котором равновесный валентный угол деформирован на 49°, имеет теплоту сгорания 705,5 кДж/моль, гидрируется при 120 °С и присоединяет бром с разрывом кольца, образуя 1,3-дибромпропан.

Нарушение равновесия происходит вследствие выделения тепла, сопровождающего протекание химических реакций, активируемых за счет механической работы [25; 60, с. 11]. Было показано, что механические потери при многократных деформациях трансформируются не только в тепловую [60, с. 11; 438, с. 56], но и в электрическую и другие виды энергии 1212, с. 412]. Особое значение приобретает механическая активация химических процессов

Методы измерения внутренних напряжений можно разделить на два больших класса: физические и механические. Механические методы основаны на измерении деформации образца, вызванной внутренними напряжениями. Деформация образца происходит вследствие нарушения равновесия сил и перехода к новому положению равновесия. По значению деформации образца, пользуясь теорией упругости, можно рассчитать значение внутренних напряжений. Нарушение равновесия и изменение формы тела может происходить самопроизвольно или целенаправленно. Первый случай реализуется в нескольких методах, из которых самым распространенным является метод гибкого катода (консольный). На преднамеренном нарушении равновесия основаны методы Калакутского, Давиденкова, Закса. Так, по изменению расстояния между концами распиленного кольца, отрезанного от тонкостенной трубы, можно рассчитать окружные напряжения. Последовательно снимая наружные слои трубы и измеряя диаметр распиленного кольца, можно рассчитать изменение окружных напряжений по толщине. По прогибу полоски, вырезанной вдоль

Следует отметить, что в обоих случаях первичным актом при ориентации я вляется нарушение равновесия в расположении звеньев (плавление для

Итогом обеих реакций является нарушение регулярности построения полимерной цепи и появление разветвленных макромолекул. Так как энергия активации вторичных реакций значительно выше энергии активации реакции роста, доля вторичных реакций падает с понижением температуры полимеризации. Применение окислительно-восстановительных систем для инициирования радикальной полимеризации бутадиена позволило снизить температуру полимеризации до 0°С и существенно уменьшить раз-ветвленность образующегося полимера [2, с. 1—86].

Следовательно, образование кристаллических структур при растяжении невулканизованных наполненных смесей на основе модифицированного полиизопрена высокой стереорегулярности (СКИ-ЗМ), рост когезионной прочности смесей на основе модифицированного полиизопрена меньшей стереорегулярности (СКИЛМ) позволяют сделать вывод, что некоторое нарушение регулярности строения макромолекул, вносимое модификацией, компенсируется возникновением при растяжении большей упорядоченности всей деформируемой системы; в некотором отношении эта упорядоченность более эффективна.

Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацией различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных зфиров и полиамидов. В результате реакций совместной поли-этерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные ди-олы или диамины, изменяется концентрация полярных групп или регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп затрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, но вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастающим количеством АГ-соли (соль гексаметилендиамина и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами-

Другое возможное нарушение регулярности связано с выходом одного углеродного атома из плоскости цепи (рис. 3).

Сополимеризация двух простейших мономеров —этилена и пропилена — осуществляется на катализаторах Циглера — Натта, которые применяются и для получения гомополимеров из каждого из этих мономеров. Интересной особенностью этой сополимеризации является ее статистический характер: в сополимере этилена и пропилена отсутствует регулярность чередования звеньев мономеров в цепях, и расположение групп СН3 в звеньях пропилена атактичное. Этот сополимер характеризуется высокоэластическими свойствами в широком температурном интервале, тогда как гомополимеры пропилена и этилена, полученные на подобных каталитических системах, высококристалличны, имеют строго регулярное чередование звеньев в цепи (изо- или синдиотактический полипропилен; линейный полиэтилен) и являются жесткими пластиками. Нарушение регулярности строения, беспорядочное чередование звеньев этих двух мономеров в полимерной цепи обусловливают гибкость макромолекул и их высокоэластичность.

зуя петли, концы. Последние два сличая приводят к нарушению регулярности складывания. Нарушение регулярности складывании может произойти также и за с1 от нерегулярных участков макромолекул, при этом образуются петли внутри складок.

Кроме того, повышение температуры усиливает роль побочных реакций, требующих сравнительно высокой энергии активации и слабо выраженных при низких температурах. Речь идет о реакциях между функциональными группами полимера и мономера, о химических превращениях полимеров и деструктивных процессах, о присоединении молекул друг к другу не только по схеме «голова к хвосту», но также по принципу «голова к голове», о присоединении молекул диенов в положениях 1, 2 и 3, 4 и т. д. В результате характер сочетания звеньев на одних участках макромолекулы отличен от порядка их взаимного расположения на других; иными словами, усиливается нарушение регулярности строения полимерной молекулы.

Кроме того, повышение температуры усиливает роль побочных реакций, требующих сравнительно высокой энергии активации и слабо выраженных при низких температурах. Речь идет о реакциях между функциональными группами полимера и мономера, о химических превращениях полимеров и деструктивных процессах, о присоединении молекул друг к другу не только по схеме «голова к хвосту», но также по принципу «голова к голове», о присоединении молекул диенов в положениях 1, 2 и 3, 4 и т. д. В результате характер сочетания звеньев на одних участках макромолекулы отличен от порядка их взаимного расположения на других; иными словами, усиливается нарушение регулярности строения полимерной молекулы.

Прочность вулканизатов кристаллизующихся каучу-ков зависит от содержания высокоориентированной (кристаллической) части образца, образующейся при растяжении к моменту разрыва, и, следовательно, от регулярности молекулярной структуры каучука [73, с. 199; 96; 97; 98, с. 202]. Поэтому нарушение регулярности строения кристаллизующихся каучуков лри вулканизации в результате образования внутримолекулярных серосодержащих циклов (обычно при распаде полисульфидных связей [98, с. 222; 99; 100]), присоединения к молекулярным цепям радикалов ускорителя или специальных модификаторов [99], а также цис-г/оанс-изомеризации главных цепей (которое может достигать 8% под влиянием серы, ускорителей класса бензтиазолов и сульфенамидов [73, с. 121; 98, с. 224]) приводит к уменьшению прочности вулканизатов. Таким же образом влияют на прочность факторы, препятствующие кристаллизации при растяжении, например, увеличение скорости или повышение температуры испытания. Однако г{мс-т/?анс-изомеризация при вулканизации НК обычно невелика, а другие виды модификации сравнительно мало влияют на степень кристаллизации в образце к моменту разрушения. Поэтому считают [99; 100], что модификация является фактором, который в значительно меньшей степени влияет на прочность, чем тип поперечных связей. Прямая связь между содержанием ориентированной части и прочностью характерна и для некристаллизующихся полимеров, но влияние модификации главной цепи на ориентацию материала обнаруживается в заметно меньшей степени,

Общая причина медленной кристаллизации ПВС может заключаться, по мнению Френкеля1", в том, что этот полимер обладает внутренней дифильностью, из-за чего он «сам себе мешает кристаллизоваться». Гидрофобным хребет макромолекулы ГШО плохо совмещается с. полярными группами Oil. Присутствие воды как бы подчеркивает этот «конфликт». Другой причиной замедленной кристаллизации ПВС может являться нарушение регулярности из-за присутствия остатков ацетатных групп (ПВС получается омылением поливи-нилацетата). Об этом свидетельствует, в частности, тот экспериментально отмеченный факт, что различные партии ПВС, полученного одним и тем же методом, ведут себя по-разному при добавлении осадителей в их водный раствор. В одних случаях переход от аморфной застудневшей системы к кристаллической проходит очень быстро, в других этот процесс растянут во времени. Тем не менее застудневание всегда приводит к возникновению условий для быстрого протекания такого перехода в отличие от случаев жидкого расслоения.

Образование смешанных эфиров, сульатацетатов, при синтезе в присутствии серной кислоты в качестве катализатора вызывает нарушение регулярности структуры полимера, приводит к уменьшению интенсивности молекулярного взаимодействия и является фактором, обуславливающим растворимость данных ацетатов, полученных способом прямой этерификации в апротонных растворителях Роговнн считает, что в синтезируемых таким способом ацетатах I (получаемых прямым ацетилированием без омыления) замещаются в первую очередь первичные группы ОН При получении ацетатов 11 (с омылением так называемых первичных ацетатов) в первую очередь омыляются ацетильные группы, находящиеся у первичных групп ОН макромолекулы. Поэтому, как считает Роговин у ацетатов II то же средней степени этерификации содержание первичных ОН групп составляет 45-50% от общего числа свободных групп ОН И тем самым подтверждается вывод, что ряд важнейших свойств ацетатов целлюлозы, и в частности их растворимость, определяется не только химическим составом и молекулярным весом, но и местом локализации определенных функциональных групп в элементарном звене макромолекулы полимера. Роговин считает, что нерастворимость ацетата 1 с у = 240 - 260 в ацетоне, в котором полностью растворимы ацетагы Птой же степени этерификации и полимеризации объясняется низким содержанием свободных

Растворимость и другие свойства перхлорвинила зависят от молекулярной массы и степени хлорирования Нарушение регулярности структуры макромолекул поливинилхлорида при введении дополнительных атомов хлора приводит к ослаблению сил меж молекул яркого взаимодействия, что способствует увеличению растворимости хлорированного полимера Так, хлорированный поливинилхлорид легко растворяется в сложных эфирах и кетонах




Нейтральном растворителе Нейтрализуют бикарбонатом Нейтрализуют разбавленным Наблюдается характерное Небольшие колебания Небольших концентраций Небольшими добавками Небольшими кусочками Небольшим количествам

-
Яндекс.Метрика