Главная --> Справочник терминов


Наследственной информации Установлены принцип построения нуклеиновых кислот и их определяющая роль в синтезе белка, передаче наследственных признаков организма и целом ряде других жизненных процессов.

Ответственная роль в биохимическом синтезе белков принадлежит нуклеиновым кислотам, которые определяют его специфичность. В самой структуре нуклеиновых кислот заключены основы точного их воспроизведения и направленного синтеза белковых молекул, а также передачи наследственных признаков организма. В то же время белок-фермент способствует синтезу нуклеиновых кислот, полисахаридов и других высокомолекулярных соединений. Сложный комплекс веществз белков, нуклеиновых кислот, углеводов и регуляторов их химических превращений, а именно ферментов, гормонов, витаминов, составляет основу жизненного цикла организма.

Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения и очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сенджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или ли-пидкую части и выполняющих очень ответственные функции в организме.

Нуклеиновые кислоты * [7] занимают особое место среди полиэфиров. Они относятся к природным биологически активным высокомолекулярным соединениям (биополимерам) и выполняют исключительно важные функции в процессах жизнедеятельности. Нуклеиновые кислоты принимают непосредственное участие в биосинтезе белка и передаче наследственных признаков организма.

Дезоксирибонуклеиновые кислоты являются матери-* альными носителями наследственных признаков, с их участием осущест-вляется передача наследственных форм организма. Они содержатся в ядре всех живых клеток, а также являются составной частью вирусов. Молекулярная масса ДНК очень велика и достигает десятков, сотен миллионов. ДНК стойки к действию щелочей.

РНК можно также синтезировать с помощью фермента из соответ-i ствующих нуклеотидов, вводя в качестве затравки ДНК. Таким образом, в структуре нуклеиновых кислот зашифрована или, как принято говорить, закодирована специфичность последовательности аминокислот в белке, причем этот код заложен, как было показано в последнее время Криком, Ниренбергом и Очоа, в последовательности оснований в нуклеиновых кислотах. В то же время белок-катализатор сам способствует синтезу нуклеиновых кислот. Белок, ДНК и РНК представляют собой единую систему, определяющую специфичность организма и отдельных его частей и осуществляющую передачу наследственных признаков организма.

Нетрудно представить себе всю важность детального^ исследования описанных процессов, протекающих в живых организмах. Уже теперь в ряде случаев удается путем изменения структуры ДНК изменять наследственную информацию в простейших организмах. Этот путь направленного изменения наследственных признаков растений и животных является основной задачей современной науки о наследственности — генетики.

ДНК составляет основу хромосом и непосредственно связана с передачей наследственных признаков; РНК принимает участие в синтезе белка. В клетках ДНК и РНК связаны с белками непрочными связями, по всей вероятности солеобразного характера.

Гетероциклические соединения — один из самых обширных и важных в практическом отношении классов органических соединений. Они широко распространены в природе, где играют огромную роль в таких ключевых процессах жизнедеятельности, как передача наследственных признаков, дыхание, фотосинтез, работа ферментативного аппарата. Неудивительно, что интенсивные исследования гетероциклов ведутся во всех промышленно развитых странах. В связи с этим важное значение имеет подготовка квалифицированных специалистов по химии гетероциклов, в особенности химиков-синтетиков, умеющих планировать и проводить синтезы сложных гетероциклических соединений. Практически во всех ведущих университетах нашей страны, во многих технологических вузах имеются сложившиеся и плодотворно работающие в области химии гетероциклов научные коллективы.

Полиэфиры не являются новыми веществами. Природные полиэфирные вещества с древних времен применяются человеком. К ним относятся пленки и лаки, образующиеся при высыхании льняного, тунгового и других растительных масел. Сложные эфиры содержатся в янтаре, даммаре, шеллаке и копалах. Полиэфиры фосфорной кислоты, такие, как рибонуклеиновые и дезоксирибонуклеиновые кислоты входят в состав живых клеток как основа построения белков и передачи наследственных признаков от одного организма к другому.

цесса передачи наследственных признаков при делении клетки, а следо-

Представление о строении нуклеиновых кислот: нуклеозиды и нуклеотиды. Гетероциклические основания, рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомальные, информационные и транспортные РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Чар-гаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Генетический код как троичный неперекрывающийся вырожденный код.

Дезоксирибонуклеиновые кислоты (ДНК) составляют основу генов, т. е. структур, обеспечивающих передачу наследственной информации. Ответственными за хранение и передачу информации являются природа и последовательность сочетания звеньев в полимере ДНК. ДНК обладают молекулярной массой до нескольких миллионов, существуют в виде двух спиралей, связанных водородными связями и содержатся в ядре клетки.

Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной информации, а также определяют синтез нужных белков в клетке и его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные (нерязветвленные) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов. Как и для белков, для нуклеиновых кислот характерна первичная и вторичная структура. Важнейшей характеристикой данной нуклеиновой кислоты является ее первичная структура, т. е. последовательность чередования входящих в ее состав четырех типов нуклеотидов. На стр. 442 и 443 для иллюстрации приведены фрагменты цепочек ДНК и РНК-

Важную роль в жизнедеятельности играют комплексы белков с нуклеиновыми кислотами — нуклеопро-теиды. Из нуклеопротеидов состоят, в частности, хромосомы, важнейшие составные части ядра клетки, ответственные за хранение наследственной информации, а также рибосомы — мельчайшие частицы протоплазмы, в которых происходит синтез белковых молекул.

Рассмотрим кратко вопрос о том, какие виды нуклеиновых кислот содержатся в клетке и какую роль в синтезе белка играет каждый из них. Молекулы дез-оксирибонуклеиновых кислот (ДНК) предназначены для хранения наследственной информации и передачи ее при делении клетки. Дезоксирпбонуклеиновые кислоты характеризуются очень высоким молекулярным весом

Ядро — небольшое шаровидное или овальное тело, окруженное цитоплазмой и нерастворимое в ней. В ядерных структурах обособлены в виде включений дезоксирпбонуклеиновая кислота (ДНК) и ее протеид (ДНКП), содержится большое количество РНК. ДНК способствует передаче наследственной информации, сохранению свойств микроорганизмов.

Огромные успехи исследований механизмов кодирования наследственной информации и биосинтеза белка, ферментативного катализа и регулирования активности ферментов, действия антибиотиков и гормонов, всей той области изучения живого, которую принято называть молекулярной биологией, приучили всех к мысли о том, что в структурах молекул жизни положение буквально каждого атома строго обусловлено и подчинено выполнению предназначенных для этих молекул биологических функций. Именно в этом смысле принято обычно говорить о специфичности биополимеров, прочно ассоциировавшейся в сознании исследователей с однозначным соответствием между структурой и выполняемой функцией. При таком «комплексе структурного детерминизма» трудно было освоиться с представлением о специфичности 'полисахаридов, для многих из которых характерна статистичность структур, микрогетерогенность и, нередко, хаотичность распределения различных моносахаридных остатков по цепи. И, тем не менее, накапливающийся материал по сложному и высоко специализированному функционированию углевод^ ных полимеров в живых системах убеждает в том, что и в этой области возможен и необходим перевод функциональных свойств биополимеров на язык молекулярных? структур, т. е. применим основной принцип молекулярной!

они являются носителями наследственной информации. Рассмотрим кратко

щем наследственной информации организма. Информация записана в виде по-

Другая, также важнейшая функция биополимеров связана с сохранением и передачей по наследству свойств живого индивида будущим его поколениям. Эта функция называется наследственностью. Ее выполняют нуклеиновые кислоты, биополимеры, в состав -которых входят химически связанные азотистые основания с ядрами пурина и пиримидина, углеводы (дезоксирибоза) и остатки фосфорной кислоты. Нуклеиновые кислоты (РНК, ДИК) являются носителями закодированной в их структуре наследственной информации каждого живого индивида и передают ее по наследству, так как осуществляют биосинтез белка в живой клетке.

меньшей мере три вида РНК. Один вид, называемый информационной РНК, находится в ядре клетки и связан с ДНК водородными связями. Этот вид в точности повторяет последовательность азотистых оснований ДНК. Это так называемая информационная РНК. Она синтезируется с помощью ферментов ДНК и так же, как и ДНК, является носителем наследственной информации. Ее молекулярная масса достигает 2-106.




Небольшим разложением Небольшой перегонной Наблюдается исчезновение Небольшое содержание Небольшом избыточном Небольшом разрежении Нецеллюлозные полисахариды Недиссоциирующих растворителях Недостаточным количеством

-
Яндекс.Метрика