Главная --> Справочник терминов


Надмолекулярные структуры ных цепей. В последнем случае одна часть макромолекул находится в одной пачке, а другая - в другой (рис. 3.17). Пачки макромолекул в свою очередь агрегируются в более крупные надмолекулярные образования - микрофибриллы.

Структурные элементы, из которых образованы гибкоцепные полимеры (мелкомасштабные элементы, сегменты, надмолекулярные образования в виде микроблоков, частицы активного наполнителя, диполь-дипольные локальные поперечные связи, поперечные химические связи и т. д.), играют в релаксационных процессах роль кинетических единиц различных размеров и разной подвижности. Каждый тип кинетических единиц характеризуется своим наиболее вероятным временем релаксации т*, i=l, 2, ..., п (где п — число кинетических единиц различных типов и, следовательно, число различных релаксационных переходов, которые на спектре времен релаксации проявляются в виде тех или иных максимумов).

И кристаллические, и некристаллические полимеры характеризуются определенной надмолекулярной структурой (см. гл. 1), однако в вязкотекучем состоянии надмолекулярные образования полимеров непрочны и легко распадаются под действием тепло-

При вязком течении происходит непрерывный процесс разрушения и перестройки его надмолекулярной структуры. Разрушение ее идет тем быстрее и дальше, чем больше Р и скорость вязкого течения. В процессе течения надмолекулярная структура полимера обратимо разрушается, причем тем сильнее, чем выше напряжение сдвига. При этом разрушение структуры происходит так, что сегменты полимерных цепей, входящие в надмолекулярные образования, отрываются по одному и энергия активации U перехода сегментов в свободное состояние равна энергии активации течения полимера. Отрыв сегментов от структурных микроблоков происходит под действием теплового движения, так как Р недостаточно велико, чтобы существенно влиять на процесс отрыва, поэтому в некоторой области изменения напряжений (/=const.

При малых Р течение полимера происходит практически с неразрушенной структурой, так как в процессе медленного течения надмолекулярные образования успевают восстанавливаться. В соответствии с этим при малых Р скорость деформации у монотонно уменьшается. При больших же Р распавшиеся микроблоки не успевают полностью восстанавливаться и течение происходит в условиях частично разрушенной структуры полимера. Процесс разрушения идет тем быстрее и дальше, чем больше Р. С увеличением Р процесс разрушения надмолекулярной структуры и связанный с ним эффект уменьшения вязкости являются главными, вследствие

Различные надмолекулярные образования и структуры в полимерах также существенно влияют на характер протекания химических реакций. Так, скорости реакций целлюлозы «ущественно зависят от ее морфологии. Многие реакции модификации целлюлозы протекают гетерогенно, так как она нерастворима или частично растворима в реакционной среде. Реагент часто вообще не достигает некоторых гидроксйльных групп в молекуле целлюлозы, прочно соединенных водородными связями:

В растворах большей концентрации (начиная с 1 % и выше) образуются вторичные надмолекулярные образования, называемые часто ассоциатами макромолекул. Реакция может приобрести гетерогенный характер, причем наружные макромолекулы в ассоциатах реагируют в первую очередь, а дальнейшее проникновение низкомолекулярного реагента внутрь ассоциата может оказаться затрудненным. Наличие в ассоциате ориентированных участков усиливает эти затруднения. По этим причинам в концентрированных растворах полимеров химические реакции с низкомоле- ^ кулярными реагентами протекают мед- ^ леннее и до меньших степеней превра- g t щения. Продукт реакции неоднороден g по молекулярному составу (см. при- ^ мер на рис. 19.1). с, 40

Отмечено [48], что при температурах ниже Тс а аморфном полиэтилен-терефталате происходит постепенное упорядочение структуры и формируются кРУпные надмолекулярные образования. Внутри этих образований пачки макромолекулярных цепей значительно сближаются, а в межструктурных участках происходит разрыхление полимера. После 1,5 лет хранения при комнатной температуре на поверхности полиэфира проявляются дендрито-подобные фигуры (рис. 5.10, а) и монокристаллы (рис. 5.10, б). После выдерживания при 50 °С в течение 1 месяца вместо дендритоподобных фигур видны менее контрастные, но более плотно сложенные структуры, напоминающие сферолиты. Рентгеновские исследования убедили, что структура

В работах [45, 46] сделана попытка объяснить наблюдаемую зависимость, а также ряд других особенностей полимеризации этилена при высоких давлениях особенностями поведения этого мономера в надкрити-. ческих условиях. Гипотеза основывается на известном факте, что плотность этилена при высоком давлении выше таковой для плотно упаке-ванных индивидуальных молекул. При повышении давления в этилене;; возникают различные надмолекулярные образования - молекулярные \ пары, бимолекулы и олигомолекулы, удельный объем которых меньше i удельного объема этилена при плотной упаковке его молекул. Так, объем молекулярной пары (в пересчете на одну молекулу этилена) составляет 127,6 см3/моль, объем бимолекулы 57,1 см3/моль, объем олиго молекулы 37,8 см3/моль. Эти частицы в зависимости от давления и температуры могут находиться в равновесии друг с другом. На рис. 4.5 показаны полученные расчетным путем области существования вышеупомянутых

В промышленности ориентацию полимеров проводят путем их одноосного или двухосного растяжения — так называемой вытяжки. Ориентационная вытяжка заключается в растяжении при определенных условиях неориентированных полимеров. Одноосио ориентированные полимеры, чаще всего волокна, получают растяжением образцов в одном направлении, при этом увеличивается длина образца, а поперечные размеры уменьшаются. Двухосная вытяжка применяется при ориентации пленок. Она может осуществляться в одну стадию путем одновременного растяжения пленки в двух взаимно перпендикулярных на-правлениях и в две стадии — путем растяжения пленки вначале в одном, а затем в перпендикулярном направлении. Под действием растягивающих сил все элементы структуры (отдельные макромолекулы, надмолекулярные образования) ориентируются в направлении действия этих сил. При этом связи между макромолекулами нарушаются, макромолекулы изменяют свою конформацию — распрямляются и сближаются. Распрямление и сближение макромолекул увеличивает межмолекулярное взаимодействие, повышает жесткость цепи (рис. 1.22).

При растворении полимеров или повышении температуры и переходе полимеров в вязкотекучее состояние возрастает сегментальная подвижность, крупные надмолекулярные образования, кристал пические области разрушаются, к функциональные группы становятся более доступными для низкомолекулярного реагента. Вероятность взаимодействия реагента с любой макромолекулой значительно возрастает. Поэтому продукты реакций в растворах или расплавах при температуре текучести или плавления значительно однороднее, чем полученные при температуре стеклования. Однако и в этом случае колебания концентрации растворов или температуры процесса вызывают существенные нарушения протекания химических реакций, особенно в высоковязких средах Это объясняется тем, что из-за высокой вязкости расплавов или концентрированных растворов замедляется диффузия реагентов к функциональным группам полимеров, что обусловливает неоднородность продуктов реакций При реакциях растворенных полимеров в процессах взаимодействия реагирующих частиц обычно принимают участие молекулы растворите 1Я и их ассоциаты. Поэтому при определении скорости и других параметров химических реакций в растворах необходимо учитывать молекулярные взаимодействия исходных частиц, промежуточных комплексов, продуктов реакции с молекулами окружающей среды. Среда наименее существенное влияние оказывает на гомочитические реакции н очень существенное на гетеролитичсскис В гемолитических реакциях, как правило, активными центрами являются свободные радикалы, в гетерочитических— ионы.

3.5. Надмолекулярные структуры.153

3.5. НАДМОЛЕКУЛЯРНЫЕ СТРУКТУРЫ

Укрупнение структурных элементов идет по длине. Длина элементарной фибриллы - около 30 нм, а макрофибриллы -2-3 мкм. Видимые в электронном микроскопе надмолекулярные структуры целлюлозы представляют собой частицы со степенью асимметрии 1:10 - 1:15.

В соответствии со степенью развития живые системы различаются степенью сложности структуры. Они образуются из простых неорганических и органических веществ и обладают определенной пространственной конфигурацией, от чего зависит их реакционная способность, Относительно простые соединения объединяются в макромолекулы и надмолекулярные структуры.

В то же время следует иметь в виду, что такое рассмотрение является первым приближением. Исследование структуры полимеров показало, что не только в кристаллическом, но и в аморфном состоянии почти всегда образуются отчетливо выраженные упорядоченные надмолекулярные структуры. Полимерные тела являются четко выраженными гетерогенными (неоднородными) системами. В них имеются границы раздела между структурными образованиями, которые могут являться зародышем трещин. При деформировании полимера возникают процессы, связанные со взаимным перемещением крупных структурных элементов, превращением в другие типы надмолекулярных образований и их •разрушением. В одном и том же объеме полимера одновременно могут сформироваться структуры многих типов. Первичными элементами для образования надмолекулярных структур являются глобулы и пачки. Они могут служить основанием для образования С'олее крупных структурных элементов полимерного тела. Образование глобул аналогично образованию капли жидкости под действием поверхностного натяжения. Полимеры, структурированные в форме глобул, обычно находятся в аморфном состоянии.

кристаллизации, обладают весьма специфической морфологией, напоминающей диски или пластины, нанизанные на общий, центральный стержень (рис. 3.7). Такие надмолекулярные структуры получили название структур типа «шиш-кебаб». Иногда поверхность кристаллов «шиш-кебаб» бывает покрыта своеобразной «вуалью», образованной, по-видимому, длинными проходными молекулами, участвующими одновременно в ламелях соседних кристаллических дисков; такие разновидности морфологии являются следствием существования на поверхности складок, как это отмечалось выше, дефектов структуры [16]. Характер строения структур типа «шиш-кебаб» заставляет предполагать, что стержень образован полностью распрямленными цепями, в то время как плоские диски состоят из складчатых цепей, раздельно растущих от центрального стержня.

В процессе кристаллизации полимеров из слабоконцентрированных растворов каждая макромолекула участвует в формировании отдельного монокристалла и полностью свободна от взаимодействия и зацеплений с другими макромолекулами. В концентрированных растворах и расплавах полимеров, для которых характерно наличие в одном объеме множества молекулярных клубков, это положение утрачивает силу. Основным морфологическим элементом, из которого формируются надмолекулярные структуры, по-прежнему остается ламель, образованная складчатой цепью, однако наличие зацеплений, затрудняющих пристраивание соседних цепей, приводит к образованию более дефектных и сложных с морфологической точки зрения структур.

Другой характерной особенностью структурирования при кристаллизации из концентрированных растворов и расплавов полидисперсных полимеров является образование дендритов. Дендри-тами называются трехмерные древовидные структуры, растущие, несмотря на ветвление в радиальном направлении. Ветвление возникает вследствие нестабильной скорости роста, присущей процессу кристаллизации полидисперсных полимеров [20]. Эта нестабильность является следствием градиентов концентрации, появляющихся из-за преимущественной кристаллизации наиболее длинных цепей, для которых значение Т°т выше и которые при температуре кристаллизации как бы подвергаются большему переохлаждению. Появление дендритов приводит к возникновению сферической симметрии. Таким образом, надмолекулярные структуры, образованные кристаллизующимися из расплава полимерами, должны иметь сферические поликристаллические области, образованные дефектными, но явно выраженными ламелями, состоящими из складчатых цепей.

При высоких температурах кристаллизации сферолиты могут вырастать до значительных размеров, так как число зародышей невелико, а скорость роста значительна. Такие надмолекулярные структуры, состоящие из более совершенных кристаллитов, обладают более высоким модулем упругости, отличаются повышенной хрупкостью и значительной оптической анизотропией. По данным Максвелла [1 ], трещины разрушения возникают в таких структурах в межсферолитных областях.

Одним из примеров удачного использования деформационно-инициированной кристаллизации является создание технологии изготовления жестких эластичных пленок и волокон из полипропилена и полиоксиметилэтиленацетата [32]. Обладающие резиноподобной эластичностью надмолекулярные структуры формируются при экструзии расплава с последующей кристаллизацией в условиях действия высоких растягивающих" напряжений.

В последнее время стал актуальным вопрос: какую роль в термодинамике и статистике равновесной высокоэластической деформации играет надмолекулярная организация? Для ответа на него необходимо напомнить, что в некристаллических эластомерах микроблоки упорядоченной структуры имеют флуктуационное происхождение и, следовательно, характеризуются определенным, конечным временем жизни (см. гл.'I). Так, для каучуков и резин время жизни надмолекулярных образований при 20 °С обычно заключено в интервале 102—104 с, а при повышенных температурах становится намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того, чтобы судить о 'достижении системой равновесного состояния, время наблюдения за свойствами эластомера должно превышать время жизни упорядоченных микроблоков. По этой причине для описания свойств равновесного состояния оказывается пригодной модель хаотически переплетенных цепей без прямого учета надмолекулярных структур флуктуационной природы. В то же время, при изучении равновесных состояний частично закристаллизованных эластомеров следует учитывать надмолекулярные структуры, так как в этом случае кристаллические упорядоченные микрообласти суть термодинамически стабильные структуры. Аналогично, существенен учет в наполненных резинах других стабильных структурных единиц — частиц активного наполнителя. В этой главе в соответствии с произведенной «отбраковкой» в основном рассматриваются термодинамические свойства ненаполненных и незакристаллизованных эластомеров, так как природа высокоэластической деформации более сложных структур остается той же, но расчет высокоэластических напряжений сильно усложняется.




Наилучшим реагентом Начальную концентрацию Наклонном положении Наложения протектора Наноструктурных материалов Наполняют водородом Наполненных полимерных Наполненную хлористым Наполнителя происходит

-
Яндекс.Метрика