Главная --> Справочник терминов


Надмолекулярных структурах Молекулярный подход к описанию эластомеров не исключает необходимости учета возникающих в ряде случаев различных надмолекулярных образований [6]. Надмолекулярная структура полимеров, в том числе эластомеров, проявляется, как известно, в трех разновидностях: в виде определенного рода упорядоченностей и морфологически обусловленных неоднородносгей в аморфном полимере; в виде кристаллических образований; и, наконец, в виде сегрегированных областей микроскопических либо субмикроско-пически.х размеров (доменов), возникающих в эластомерных композициях, а также в блок-сополимерах, а в некоторых случаях и в статистических сополимерах вследствие несовместимости компонентов либо участков цепи, различающихся по химической природе. Наличие и конкретная роль того или иного типа надмолекулярных образований зависит от химической природы и молекулярной структуры эластомеров, а также от условий их получения, переработки и эксплуатации.

Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико: они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (1СГ1 - 1(Г4 с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрушение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига i происходят разукрупнение флуктуационных элементов структуры (ассоциа-тов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением т)эф при возрастании т. При достаточно больших т происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине-

В то же время следует иметь в виду, что такое рассмотрение является первым приближением. Исследование структуры полимеров показало, что не только в кристаллическом, но и в аморфном состоянии почти всегда образуются отчетливо выраженные упорядоченные надмолекулярные структуры. Полимерные тела являются четко выраженными гетерогенными (неоднородными) системами. В них имеются границы раздела между структурными образованиями, которые могут являться зародышем трещин. При деформировании полимера возникают процессы, связанные со взаимным перемещением крупных структурных элементов, превращением в другие типы надмолекулярных образований и их •разрушением. В одном и том же объеме полимера одновременно могут сформироваться структуры многих типов. Первичными элементами для образования надмолекулярных структур являются глобулы и пачки. Они могут служить основанием для образования С'олее крупных структурных элементов полимерного тела. Образование глобул аналогично образованию капли жидкости под действием поверхностного натяжения. Полимеры, структурированные в форме глобул, обычно находятся в аморфном состоянии.

разца в направлении, перпендикулярном прежнему действию нагрузки. Ориентационная вытяжка связана с рекристаллизацион-иыми процессами, перестройкой надмолекулярных образований. Она не исчезает при выводе материала в высокоэластическое состояние. В этом случае деформации необратимы п относятся к классу склерономных (в отличие от реономных, характерных для вязкоупругих тел и жидкостей), пластических. Но, как было упомянуто выше, они могут быть сняты растяжением в перпендикулярном направлении. В этом плане ориентацион-ное деформирование кристаллизующихся полимеров является обратимым.

Характер развития шейки и деформирования кристаллизующихся полимеров зависит от молекулярной массы М и температуры испытаний. При повышении М деформируемость и разрушение становятся более вязкими. К такому же эффекту приводит повышение температуры Т. Итак, характер взаимного расположения макромолекулярных цепей, их степень упорядоченности во многом определяют механические свойства полимерных материалов. При этом следует иметь в виду, что относительная роль молекулярных и надмолекулярных структур в формировании определенных физико-механических свойств полимера меняется в зависимости от температурных условий окружающей среды и жесткости макромолекул. Понижение температуры или гибкости макромолекулы усиливает роль надмолекулярных образований и, наоборот, повышение температуры Т или гибкости молекулярных цепочек выдвигает на первый план характер молекулярного строения.

В последнее время стал актуальным вопрос: какую роль в термодинамике и статистике равновесной высокоэластической деформации играет надмолекулярная организация? Для ответа на него необходимо напомнить, что в некристаллических эластомерах микроблоки упорядоченной структуры имеют флуктуационное происхождение и, следовательно, характеризуются определенным, конечным временем жизни (см. гл.'I). Так, для каучуков и резин время жизни надмолекулярных образований при 20 °С обычно заключено в интервале 102—104 с, а при повышенных температурах становится намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того, чтобы судить о 'достижении системой равновесного состояния, время наблюдения за свойствами эластомера должно превышать время жизни упорядоченных микроблоков. По этой причине для описания свойств равновесного состояния оказывается пригодной модель хаотически переплетенных цепей без прямого учета надмолекулярных структур флуктуационной природы. В то же время, при изучении равновесных состояний частично закристаллизованных эластомеров следует учитывать надмолекулярные структуры, так как в этом случае кристаллические упорядоченные микрообласти суть термодинамически стабильные структуры. Аналогично, существенен учет в наполненных резинах других стабильных структурных единиц — частиц активного наполнителя. В этой главе в соответствии с произведенной «отбраковкой» в основном рассматриваются термодинамические свойства ненаполненных и незакристаллизованных эластомеров, так как природа высокоэластической деформации более сложных структур остается той же, но расчет высокоэластических напряжений сильно усложняется.

В кристаллических полимерах сосуществуют различные типы надмолекулярных образований. Таким образом, кристаллические полимеры представляют собой сложные поликристаллические агрегаты различной степени дефектности.

Возможность упорядочения макромолекул, проявляющегося благодаря межмолекулярному взаимодействию и тепловому движению отрезков цепей (сегментов), определяет наличие у полимеров разных классов надсегментальных и надмолекулярных образований, представляющих собой структуры с различной степенью де,-фектности. Эти надмолекулярные структуры определяют важнейшие механические свойства и кристаллических, и некристаллических полимеров, в частности их деформационные и прочностные свойства.

Часто возникает вопрос о том, какую роль в равновесной высокоэластической деформации играют надмолекулярные структуры в виде физических узлов сетки. Для ответа на этот вопрос необходимо учесть, что в некристаллических полимерах (эластомерах) структурные микроблоки упорядоченной структуры имеют флуктуа-ционное происхождение и, следовательно, характеризуются определенным конечным временем жизни. Так, для каучуков.н резин время жизни надмолекулярных образований при 20° С характеризуется временем 102—104 с (Я-процессы), а при повышенных температурах оно намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того чтобы достичь равновесного состояния, практически надо наблюдать за

Релаксационные физические свойства полимеров зависят не только от их молекулярного строения, они во многом определяются и надмолекулярными структурами, которые, в свою очередь, зависят как от своих собственных характеристик (вид и размеры надмолекулярных образований, связи между различными элементами структуры), так и от характеристик макромолекул или про-

В случае энтропийного механизма при переходе в процессе разрушения надмолекулярных образований от упорядоченной к неупорядоченной структуре 5 возрастает. В частности, приняв для энт--

В настоящее время на основании результатов электронно-микроскопических исследований (глава V) возникли новые представления о надмолекулярных структурах в полимерах 3-п. Под этим термином понимают любые структуры, образованные в результате

Возможность образования мнкротрещин в полимерах связана с наличием в них значительного свободного объема (см. гл. 4). Микротрещины возникают, как правило, на границах надмолекулярных образований и в дефектных участках самих структур. Поэтому чем меньше размеры надмолекулярных структур в аморфных и кристаллических полимерах, чем выше плотность упаковки макромолекул в надмолекулярных структурах и самих структур, тем в меньшей мере снижается прочность по сравнению с предельно достигаемой. Кристаллические полиморы характеризуются большой плотностью упаковки по сравнению с аморфными, и для них охр, как правило, выше и существенно зависит от степени кристалличности и морфологии кристаллов. Ниже приведены значения ахр некоторых полимеров в аморфном (А) и кристаллическом (К) состояниях-

учение о надмолекулярных структурах, оказывающих

Наиболее важными из достоинств шлангово-изоляционной резины являются хорошие диэлектрические свойства и теплостойкость. Реаина «а основе ХПЭЭ сохраняет хорошие диэлектрические характеристики после выдержки в воде даже IB течение 14 сут (р„ = 2,2-1010 Ом-м), тогда как .резина «а основе хлородренового каучука утрачивает диэлектрические .свойства через 7 сут. Хорошие диэлектрические свойства резины я а основе такого полярного каучука, как ХПЭЗ с вулканизующей системой соль СГ + оксид. магния+ сера, связаны, по-видимому, с эффектом ассоциации поперечных связей и подвесок в 'Надмолекулярных структурах.

В настоящее время на основании результатов электронно-микроскопических исследований (глава V) возникли новые представления о надмолекулярных структурах в полимерах3-11. Под этим термином понимают любые структуры, образованные в результате

В настоящее время на основании результатов электронно-микроскопических исследований (глава V) возникли новые представления о надмолекулярных структурах в полимерах3-11. Под этим термином понимают любые структуры, образованные в результате

Итак, на основании полученных результатов, а также данных по снятию обратимой деформации [155, с. 5, 173—177] можно представить процесс восстановления деформации при нагреве следующим образом. На первой стадии восстановления формы растянутых образцов происходит дезориентация сложных структурных образований (способность к сохранению ориентации у этих надмолекулярных образований определяется температурой деформирования: чем выше температура деформирования, тем полнее осуществляется ориентация сложных структурных образований и тем выше их устойчивость к нагреву). На второй стадии (исчезновение высокоэластической деформации) структурные превращения протекают в уже дезориентированных сложных надмолекулярных структурах.

II 1.1. Основные представления о надмолекулярных структурах ... 144

Исследования С. Я- Френкеля, Г. Л. Слонимского, Келлера, Кабаяши и других отечественных и зарубежных ученых позволили установить влияние ориентации расплава на кинетику процесса кристаллизации и характер возникающих надмолекулярных структур. Современные представления о надмолекулярных структурах и методах управления ими в процессах переработки изложены в III главе.

III. 1. ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ О НАДМОЛЕКУЛЯРНЫХ СТРУКТУРАХ

Работами школы академика В. А. Каргина показано, что механические свойства полимерных материалов в значительной мере зависят от характера надмолекулярных структур, формирующихся в процессе переработки. Поэтому здесь приведены основные сведения о надмолекулярных структурах, встречающихся в наиболее распространенных кристаллических полимерах.




Наименьшей электронной Наименьший возможный Накопления продуктов Наложении электрического Наполняют следующим Наполненных эпоксидных Наполненных резиновых Наполненную кусочками Начинается энергичное

-
Яндекс.Метрика