Главная --> Справочник терминов


Определения абсолютной Рис. 4. Номограммы для определения энтальпии легких углеводородных жидкостей

Д. М. Кемпбел рекомендует для определения энтальпии многокомпонентных смесей углеводородов серию графиков (рис. 4, 5). За параметр состава принята молекулярная масса смеси. Для газовых смесей построены графики при разных давлениях. Энтальпия для промежуточных давлений определяется интерполяцией. Для жидких смесей влияние давления не учитывается.

~50600 700 800 900 1000 1100 1200 1300 MOO 1500 Я,Дж/кг Рис. 5. Номограммы для определения энтальпии природного газа.

Энтальпия идеального газа зависит только от температуры, реального — от температуры и давления. Существуют графические и аналитические методы определения энтальпии. Графический метод определения энтальпий углеводородов Сг—Сс, основанный на принципе соответственных состояний, приводится в литературе [25]. Энтальпии чистых компонентов при заданных условиях можно находить по диаграммам состояния этих веществ [25].

В настоящее время одним из наиболее точных и надежных методов определения энтальпии является метод Ли—Кеслера [36]. Его используют также для расчета коэффициента сжимаемости, коэффициентов летучести, энтропии и теплоемкостей. Метод основан на применении теории соответственных состояний и модифицированного уравнения состояния Бенедикта—Вебба—Рубина в приведенной обобщенной форме.

Рис. 65. Пример ступенчатого определения энтальпии процесса

Метод 3. Применим для определения энтальпии всех газовых потоков, однако энтальпию некоторых жидких углеводородов по этому методу определить нельзя.

Энтальпия идеального газа зависит только от температуры, реального — от температуры и давления. Существуют графические и аналитические методы определения энтальпии. Графический метод определения энтальпий углеводородов Са — С6, основанный на принципе соответственных состояний, приводится в литературе [25]. Энтальпии чистых компонентов при заданных условиях можно находить по диаграммам состояния этих веществ [25 ].

В настоящее время одним из наиболее точных и надежных методов определения энтальпии является метод Ли—Кеслера [36]. Его используют также для расчета коэффициента сжимаемости, коэффициентов летучести, энтропии и теплоемкостей. Метод основан на применении теории соответственных состояний и модифицированного уравнения состояния Бенедикта—Вебба—Рубина в приведенной обобщенной форме.

Методика определения энтальпии газовой смеси при этом сводится к следующему.

Поэтому для определения энтальпии жидкой смеси рекомендуется способ, аналогичный изложенному выше для определения энтальпии газовой смеси: по универсальным таблицам [2 ] определяется функция

При попадании света на любую молекулу в прозрачной среде скорость его прохождения через среду уменьшается из-за взаимодействия с молекулой. В большом масштабе это явление ответственно за преломление света, причем уменьшение скорости пропорционально показателю преломления среды. Степень взаимодействия зависит от поляризуемости молекулы. Плоскополяризованный свет можно рассматривать как состоящий из двух видов циркулярно поляризованного света. Последний имеет (или должен иметь, если рассмотреть его как волну) вид спирали, закрученной вокруг оси движения света, причем одна спираль левая, а другая правая. До тех пор пока плоскополяризованный свет проходит через симметричную среду, две циркулярно поляризованные составляющие имеют одинаковую скорость. Однако хиральная молекула проявляет различную полярность в зависимости от того, с какой стороны на нее падает свет, с левой или с правой. Одна циркулярно поляризованная составляющая света «подходит» к молекуле, скажем, слева и встречает иную поляризуемость, чем справа, поэтому замедление происходит в разной степени (в крупных масштабах это выражается в разных показателях преломления). Это означает, что левая и правая составляющие циркулярно поляризованного света должны иметь различную скорость прохождения через среду. Однако две составляющие одного пучка света не могут двигаться с разной скоростью, поэтому в действительности более быстрая составляющая «тянет» другую к себе, что приводит к вращению плоскости. Такое явление можно описать математическим выражением и в принципе можно рассчитать величину и знак вращения для любой молекулы (что служит еще одним способом определения абсолютной конфигурации). При этом необходимо использовать волновое уравнение и помнить его ограничения, рассмотренные в гл. 1. Практически величина и знак вращения были рассчитаны лишь для нескольких молекул, причем правильных результатов было не меньше, чем ошибочных. На основании данных о рефракции связей и поляризуемости групп были разработаны эмпирические методы прогнозирования величины и знака вращения [60]. Во многих случаях эти методы дают вполне удовлетворительные результаты.

В соединениях с двумя и более хиральными центрами абсолютную конфигурацию следует определять отдельно для каждого центра. Обычно сначала определяют конфигурацию одного центра каким-либо из описанных в разд. 4.7 методов, а затем соотносят ее с конфигурациями других хиральных центров молекулы. Одним из методов является рентгеноструктурный анализ; как уже отмечалось, его нельзя использовать для определения абсолютной конфигурации одного хирального центра, он дает относительную конфигурацию всех хиральных центров молекулы, и если конфигурация первого центра определена независимо, можно получить абсолютную конфигурацию всех остальных центров. Для этой цели используются также другие физические и химические методы (см., например, разд. 4.13).

Надежной основой для определения конфигурации оптически активных соединений с асимметрическим атомом углерода являются данные специального рентгенографического анализа с использованием тяжелого атома, вводимого в молекулу. При этом используют Рентгеновы лучи с длиной волны, близкой к краю рентгеновского поглощения тяжелого атома, введенного в молекулу в качестве метки. В результате на обычную дифракцию накладывается фазовый сдвиг и рентгенограммы оптических антиподов становятся неидентичными. За два десятка лет, прошедших со времени открытия рентгенострук-турного метода определения абсолютной конфигурации соединений, благодаря применению автоматических дифрак-тометров и ЭВМ рентгенографические исследования существенно упростились, а время, необходимое для их проведения, существенно сократилось.

Впервые рентгенографический метод определения абсолютной конфигурации был применен к винной кислоте. Это сделали в 1951 г. Бийо, Пирдмен и Ван-Боммель в той самой лаборатории, в которой в прошлом веке работал Вант-Гофф. За два десятка лет, прошедших со времени открытия рентге-ноструктурного метода определения абсолютной конфигурации, таким путем установлены конфигурации около двухсот оптически активных веществ — среди них и органические вещества, и оптически активные комплексные соединения. Сводка этих данных имеется в работах [12]. К числу веществ с установленной абсолютной конфигурацией относятся различные оксикислоты, аминокислоты, терпеноиды, стероиды, алкалоиды,сахара, например:

хирального центра, и знаком вращения прямого соответствия нет. Определить абсолютную конфигурацию химическими методами, если не известна абсолютная конфигурация хотя бы одного хирального реагента (а так и было вначале), невозможно. Спектральные методы могут дать информацию только об относительной конфигурации. В настоящее время существуют лишь два метода независимого определения абсолютной конфигурации: теоретический расчет и исследование аномальной дифракции рентгеновских лучей на ядрах тяжелых элементов.

Для определения абсолютной конфигурации применяются два метода: экспериментальное исследование аномальной дифракции рентгеновских лучей на ядрах тяжелых атомов и теоретический расчет величины оптического вращения.

соб определения абсолютной конфигурации, он применил его и для опре-

шенным методом- определения абсолютной конфигурации.

использовались для определения абсолютной конфигурации (см, стр. 333)

10.20. Метод Кернера для определения абсолютной

Кернера метод определения абсолютной




Определении структуры Определению молекулярных Определенные экспериментально Определенные различными Определенных функциональных Определенных положениях Определенных температур Определенными преимуществами Определенным положением

-
Яндекс.Метрика