Главная --> Справочник терминов


Определения гидроксильных Параллельно с развитием элементарного микроанализа шло также развитие способов определения функциональных групп. Для выяснения строения химикам особенно важно знать, связана ли, например, метильная группа с кислородом или азотом. Различные методы дают сейчас возможность не только качественно охарактеризовать ту или иную связь, но и количественно определить ее.

Реакции, примененные для определения функциональных групп:

Изложенный в этом разделе материал показывает, что реакции между магнийорганическими соединениями и соединениями с подвижным атомом водорода имеют весьма важное значение; они используются как метод качественного к количественного определения функциональных групп, содержащих подвижный водород, как препаративный метод получения углеводородов из галоидопроизводных и, наконец, как метод получения реакциоиноспособных магнийоргапических соединений ряда ацетилена, циклопентадиепа, индена, флуо-рена, пиррола, индола.

На выбор метода для определения функциональных групп влияют следующие факторы;

Взаимодействие связей в пределах функциональной группы характеризуется строгим постоянством и только в небольшой степени зависит от природы углеродного скелета, несущего эту функциональную группу. Поэтому оказывается возможным установить соответствие между различными функциональными группами и свойственными им групповыми частотами. Именно по этой причине ИК-спектроскопия используется главным образом для определения функциональных групп молекулы. Часто бывает трудно представить многие характеристические колебания сложных функциональных групп в виде совокупности простых валентных или деформационных колебаний. Однако химик-практик должен быть знаком с частотами типичных функциональных групп и пользоваться ими при анализе строения молекул; эти частоты приведены в табл. 28-2. Дополнительные сведения к таблице читатель может найти в соответствующих главах. Имея в виду вездесущность простых углеводородов, именно их инфракрасные спектры мы рассмотрим в этой главе.

Химические методы определения функциональных групп основаны на реакциях титрования и широко описаны в литературе. Из числа физических и физико-химических методов наиболее широко распространены для изучения функциональных групп полимеров методы молекулярной спектроскопии (инфракрасная и спектроскопия комбинационного рассеяния), а также метод ядерного магнитного резонанса. С помощью i этих методов можно обнаружить функциональные группы, содержащиеся в полимерной цепи (например, галогены, нитрильные, а также карбонильные и другие группы, которые образуются в полимере в результате реакций окисления).

Лигнин в отличие от полисахаридов - полифункциональный 'полимер. Его функциональные группы весьма разнообразны: метоксильные, гидроксильные фенольные и алифатические, карбонильные альдегидные и кетонные, карбоксильные, а также двойные связи алкенового типа. Для функциональных групп лигнина характерны все свойства и закономерности химических реакций, известные в органической химии. Эти реакции используются и для количественного определения различных функциональных групп. Однако в последнее время все большее распространение для определения функциональных групп приобретают различные спектроскопические методы: дифференциальная УФ-спектроскопия, ИК-спектро-скопия, ПМР('Н-ЯМР)-спектроскопия и 13С-ЯМР-спектроскопия (см, 12.7.3). При рассмотрении методов определения функциональных групп будут изложены лишь общие понятия. Подробные методики можно найти в литературе [40].

Описаны методики анализа широко применяемых полимеров. Приведены химические, физико-химические и физические методы количественного определения функциональных групп, примесей остаточных мономеров и сопутствующих веществ, методы идентификации полимеров и определении их физических свойств.

Функциональный анализ полимеров проводят главным образом с целью количественного определения функциональных групп, находящихся в составе макромолекулы и на ее концах.

Для некоторых классов полимеров характерно наличие групп, проявляющих кислые (или основные) свойства. В этих случаях для количественного определения функциональных групп могут быть применены методы кислотно-основного титрования с индикацией точки нейтрализации любым из принятых при кислотно-основном титровании методов (индикатор, потен-циометрия, кондуктометрия, колориметрия и т. д.). При этом особое значение имеет титрование с применением неводных сред (в том числе спиртов, уксусной или муравьиной кислоты, пиридина, диметилформамида).

В клеях и герметиках определяют содержание сухого остатка и его состав. Для определения состава сухого остатка часть клеевой композиции освобождают от растворителей при комнатной температуре или путем коагуляции полимера спиртом и дальнейшей отмывкой полимера на холоду спиртом, ацетоном и затем горячей экстракцией ацетоном до полного извлечения органических веществ. В некоторых случаях остаток после выделения разделяют экстракционными методами. Для экстракции сухого остатка применяют индивидуальные растворители или систему растворителей различной полярности. Схема анализа сухого остатка аналогична схемам анализа резин. Для анализа экстракта из клея, состоящего из различных органических добавок, применяют уже упомянутые ;в схемах анализа резин и классические методы для определения функциональных групп и основных классов органических соединений.

Изложенный в этом разделе материал показывает, что реакции между магнийорганическими соединениями и соединениями с подвижным атомом водорода имеют весьма важное значение; они используются как метод качественного и количественного определения функциональных групп, содержащих подвижный водород, как препаративный метод получения углеводородов из галоидопроизводных и, наконец, как метод получения реакционноспособных магнийорганических соединений ряда ацетилена, циклопентадиена, индена, флуоре-на, пиррола, индола.

На этом основан предложенный в 1920 г. Л. А. Чугаевым и разработанный Ф. В. Церевитиновым способ количественного определения гидроксильных групп в органических соединениях: навеску подлежащего исследованию вещества обрабатывают маг-нийиодметилом и измеряют объем получающегося при этом метана.

В 1902 г. Л. Л. Чугаев * предложил применять йодистый метилмагний для качественного определения гидроксильных, аминных и других групл, содержащих подвижный атом водорода:

Наиболее важным применением йодистого водорода является восстановление гидроксильных групп Реакция протекает настолько полно, что ее можно использовать для количественного опредетения этих групп При расчетах исходят из количества вступившего в реакцию йодистого водорода, которое соответствует потному обмену гвдроксильиых групп иа йод и частичному обмену йода иа водород Количество гидроксильных групп определяют путем измерения количества выделившегося йода [91]. Опыты показывают, что этот метод пригоден дли определения гидроксильных групп в первичных спиртах, многоатомных спиртах, окснкислотах и других соединениях, в которых эти группы активированы присутствием электроотрицате чьных заместителей.

Относительно методов определения гидроксильных групп см. главу «Гидроксильная группа», вып. I, этот том.

Для определения гидроксильных групп пользуются также и методом бензоилирования. Однако его применяют значительно реже.

Для количественного определения гидроксильных групп применяют различные методы. К общим для спиртовых и феноль-ных гидроксильных групп относятся широко применяемые методы ацилирования, т. е. образования сложных эфиров определяемого гидроксила полимера с ацильным RCO остатком используемой кислоты, для чего применяют ангидриды и хлор-ангидриды соответствующих кислот. При этом чаще всего проводят ацетилирование, т. е. образование сложного эфира гидроксила полимера с ацетилом СН3СО — ацильным остатком уксусной кислоты.

Оба метода можно использовать также для определения других групп, содержащих активные атомы водорода: сульф-гидрильных, карбоксильных, имидных, имино- и аминогрупп, воды. Поэтому указанные методы для определения гидроксильных групп применяют в тех случаях, когда полимер не содержит других групп с активными атомами водорода.

Все методы определения гидроксильных групп используют для последующего расчета среднечисловой молекулярной мас-сы поликарбоната.

Проведены определения гидроксильных групп в фенолоформальдегидных полимерах методом ацетилирования. Предложено [178] определять гидроксильные группы в полимерах, ацетили-руя их уксусным ангидридом в присутствии пиридина с повторным переосаждением полученных эфиров из ацетонового раство-

Другие методы определения гидроксильных групп

Описан [157] метод определения гидроксильных групп в поксидных смолах с применением алюмогидрата лития. Навес-у смолы растворяют в определенном объеме тетрагидрофурана [ обрабатывают избытком алюмогидрида лития при 0°С; выде-[яющийся при реакции газообразный водород измеряют газо-1етрическим методом. Проводят соответствующий контрольный •пыт, применяя такой же объем тетрагидрофурана. По количе-тву выделенного водорода рассчитывают содержание гидрок-ильных групп.




Окончательно установленным Определенные преимущества Определенные трудности Определенных количеств Определенных соединений Определенных заместителей Определенным количеством Определенным содержанием Определенная экспериментально

-
Яндекс.Метрика