Главная --> Справочник терминов


Ориентация полимерных Вектор с — ptXp2 нормален к поверхности. Его пространственная ориентация определяется двумя из трех направляющих косинусов: cos аг, cos aa и cos az, удовлетворяющих уравнению

Ориентация определяется реакцией cr-комплекса толуола и NC18. Несомненно, аминогруппы, которые не принимают участия в реакции замещения, могут быть вовлечены в реакцию Фриделя — Крафтса с образованием аминосоединений самого разнообразного вида. Для получения комплекса с аминогруппой необходимо ввести достаточное количество хлористого алюминия (см. примеры" в.2 и 3, а также приведенные ниже реакции)

4) З-Хлор-4-фторацетофенон (80% из о-хлорфторбензола, хлористого ацетила и хлористого алюминия в сероуглероде; ориентация определяется атомом фтора) [16].

В аминофенолах имеется два реакционноспособных положения, но при роданировании ориентация определяется положением аминогруппы. В качестве примера может служить превращение о-аминофенола в 4-ро-дан-2-оксианилин с выходом 50°/0.

при переходе от дигидроарильных анионов к анион-радикалам, от природы ароматического субстрата и заместителей в нем, увеличиваясь в ряду 8<7<4<1<5<6,иот природы алкилгалоге-нида, возрастая при переходе от иодидов и бромидов к хлоридам и при уменьшении количества алкилгалогенида. В реакциях анионных форм дицианбензолов 2 и 3 образуются только ароматические продукты, причем соотношение алкилирования по ипсо- и незамещенному положениям определяется степенью восстановления субстрата и природой алкилгалогенида, увеличиваясь при переходе от анион-радикалов 3~, 2~ к дианиону 22~, и, в последнем случае, при уменьшении степени разветвления алкильного фрагмента и варьировании галогена в рядах t- < s- < г- < п- и К Вг < С1. В рамках структурного подхода, основанного на использовании тестирующих реагентов, установлено, что реализующаяся региосе-лективность алкилирования непосредственно связана с механизмом реакции. Все типы продуктов восстановления мононитрилов 1, 4-8 - анион-радикалы, дианионы и циандигидроарилъные анионы - взаимодействуют с первичными алкилгалогенидами как нуклеофилы (механизм SN). При этом алкилирование осуществляется по гтсо-положению по отношению к цианогруппе. На основании данных, полученных с использованием спектральных и квантово-химических методов, сделан вывод о том, что такая ориентация определяется распределением электронной плотности в анионном продукте восстановления соответствующего нитрила 2' (4, 17-18 g отличие от этого, анион-радикалы дицианбензолов 2~' и 3~- в реакциях с алкилгалогенидами выступают в качестве одно-электронных восстановителей (механизм ЕТ), а дианион 22~ проявляет двойственную реакционную способность в зависимости от строения алкилгалогенида. Реализацией механизма ЕТ обусловлено образование продуктов, отвечающих алкилированию как по ипсо-, так и по незамещенному положению, и наблюдаемая при этом региоселективность согласуется как с распределением спиновой плотности в анион-радикале, так и с относительной стабильностью интермедиатов 7т 8'19> 20. Выявленные закономерности протекания реакций анионных продуктов восстановления аренкарбо-нитрилов с алкилгалогенидами, кратко изложенные выше, составляют теоретическую основу направленного использования

Таким образом, ориентация определяется относительными скоростями

При введении второго заместителя в молекулу нафталина ориентация определяется природой уже имеющегося в ней заместителя. Электроно-донорный заместитель направляет атаку электрофила в то же кольцо; при этом достигается большая стабилизация промежуточно образующегося а-комплекса.

Согласно соображениям, изложенным в работе [155], в ре-ан"чях взаимодействия 2,3-дихлорюглона с анилином ориентация определяется наличием сильной внутримолекулярной водородной связи, котс^ая должна усилива'"з мезомерны! сдвиг и делать предпочтительной нуклеофильную атаку по С2. В щелочной среде преобладаниее влияние на двойную связь хиноидного цикла оказывает другая карбонильная группа - Cj=0.

При введении второго заместителя в молекулу нафталина ориентация определяется природой уже имеющегося в ней заместителя. Электронодо-норный заместитель, находящийся в молекуле нафталина, направляет атаку электрофила в то же кольцо; при этом достигается большая стабилизация промежуточно образующегося ст-комплекса.

при переходе от дигидроарильных анионов к анион-радикалам, от природы ароматического субстрата и заместителей в нем, увеличиваясь в ряду 8<7<4<1<5<6,иот природы алкилгалогенида, возрастая при переходе от иодидов и бромидов к хлоридам и при уменьшении количества алкилгалогенида. В реакциях анионных форм дицианбензолов 2 и 3 образуются только ароматические продукты, причем соотношение алкилирования по ипсо- и незамещенному положениям определяется степенью восстановления субстрата и природой алкилгалогенида, увеличиваясь при переходе от анион-радикалов 3~, 2~ к дианиону 22~, и, в последнем случае, при уменьшении степени разветвления алкильного фрагмента и варьировании галогена в рядах t- < s- < г- < п- и I < Вг < С1. В рамках структурного подхода, основанного на использовании тестирующих реагентов, установлено, что реализующаяся региосе-лективность алкилирования непосредственно связана с механизмом реакции. Все типы продуктов восстановления мононитрилов 1, 4-8 - анион-радикалы, дианионы и циандигидроарилъные анионы - взаимодействуют с первичными алкилгалогенидами как нуклеофилы (механизм SN). При этом алкилирование осуществляется по мясо-положению по отношению к цианогруппе. На основании данных, полученных с использованием спектральных и квантово-химических методов, сделан вывод о том, что такая ориентация определяется распределением электронной плотности в анионном продукте восстановления соответствующего нитрила 2' 14,17-18 g отличие от этого, анион-радикалы дицианбензолов 2~- и 3~- в реакциях с алкилгалогенидами выступают в качестве одно-электронных восстановителей (механизм ЕТ), а дианион 22~ проявляет двойственную реакционную способность в зависимости от строения алкилгалогенида. Реализацией механизма ЕТ обусловлено образование продуктов, отвечающих алкилированию как по ипсо-, так и по незамещенному положению, и наблюдаемая при этом региоселективность согласуется как с распределением спиновой плотности в анион-радикале, так и с относительной стабильностью интермедиатов 7'8> 19'20. Выявленные закономерности протекания реакций анионных продуктов восстановления аренкарбо-нитрилов с алкилгалогенидами, кратко изложенные выше, составляют теоретическую основу направленного использования

Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико: они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (1СГ1 - 1(Г4 с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрушение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига i происходят разукрупнение флуктуационных элементов структуры (ассоциа-тов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением т)эф при возрастании т. При достаточно больших т происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине-

При вытяжке происходит ориентация полимерных цепей (макромолекул) вдоль оси волокон, в результате чего повышается их разрывная прочность и уменьшается величина относительного удлинения при растяжении.

Ориентация полимерных молекул возможна как для

Обычно под ориентированным состоянием полимеров принято понимать состояние, в котором имеется четко выраженная одноосная ориентация полимерных цепей. Системы, находящиеся в ориентированном состоянии, во многих отношениях можно рассматривать как одномерные или точнее квазиодномерные. К таким системам относятся волокна и одноосно ориентированные пленки, из которых также можно получать волокна (пленочные нити).

Дипольная поляризация Ориентация полимерных систем

Возникновение дипольно-сегментальных и дипольно-групповых потерь в полимерах связано с подвижностью кинетических единиц ыакромолекулярной цепи. Поэтому факторы, определпющие_моле~ кулярную подвижность, оказывают влияние Eia диэлектрические ~no~fepГв'~Тюлиш:рах. "К" ним относятся ориентация полимерных цепей ч пачек, сшивание цепей, давление, действие низкомолеку-лярных примесей, в частности пластификаторов.

При очень высоких температурах или весьма низких молекулярных массах ориентация полимерных цепей проявляется слабо. В этих условиях полимер испытывает «вязкий» разрыв, при котором из-за малого внутреннего трения макромолекулы скользят относительно соседних без разрыва химических связей. При всех других видах разрыва (хрупкий, высокоэластический и в значительной мере пластический) у ориентированных и неориентированных полимеров разрушаются и химические связи. Для пространственно-структурированных полимеров это очевидно, а для линейных—обсуждается в ряде работ3' 5> 8> 24~26>34. Так, например, в одной из последних работ34 показано, что энергия активации процесса разрушения полимера не зависит от факторов, изменяющих межмолекулярное взаимодействие (ориентации, пластификации, введения растворителей и др.) и по величине соответствует энергии разрыва химических связей. Это подтверждается данными табл. 6, где приведены значения постоянных уравнения долговечности [см. уравнение (I. 13)] для слабо- и сильноориентированных волокон.

В ориентированных полимерах основной морфологической формой является фибрилла (микрофибрилла). В надмолекулярных образованиях, называемых фибриллами, имеет место преимущественная ориентация полимерных цепей вдоль большой оси фибриллы. Другой важной особенностью фибриллы является существование у нее достаточно четких боковых границ. В ориентированных кристаллических полимерах фибрилла имеет сложное строение и состоит из чередующихся кристаллитов и аморфных областей.

При охлаждении сдеформированной модели картина резко изменится. Вследствие увеличения вязкости релаксация напряжений в высокоэластическом элементе будет происходить с очень малой скоростью, а если охладить модель ниже температуры стеклования, то высокоэластические напряжения практически окажутся замороженными. Поскольку под действием напряжений в полимере происходит частичная ориентация полимерных цепей и образование опре-

Таким образом, основная причина возникновения остаточных напряжений — это возникающая в результате охлаждения термофиксация ориентированного состояния полимерных цепей. Поскольку ориентация полимерных молекул в форме возникает в результате существования деформации сдвига, появление ориентированных областей возможно на всех стадиях процесса охлаждения изделия.

Во всех случаях ориентация полимерных молекул возникает тогда, когда расплав подвергается воздействию достаточно больших тангенциальных или нормальных напряжений, вызывающих его высокоэластическую деформацию. Поэтому очевидно, что на величину ориентации должны влиять те параметры литьевого цикла, которые тем или иным образом определяют величину действующих в форме напряжений. Такими параметрами являются: температура расплава, давление впрыска, температура формы. Существенное влияние может оказывать и геометрия литниковой системы, поскольку именно она определяет потери давления и величину давления на входе в полость формы.




Обнаружены некоторые Основания утверждать Основание отфильтровывают Основание рассматривать Обработка полученного Основании имеющихся Основании измерения Основании определения Обработка поверхности

-
Яндекс.Метрика