Главная --> Справочник терминов


Ориентированных полимерных Мюллер [62], а также Кауш и Бехт [55] отметили, что процессы проскальзывания и изменения конформационного состояния цепей в энергетическом отношении' могут быть подобными разрывам связей, если последние происходят вследствие искажения полимерной системы под действием напряжения или в результате локального нагрева. Тогда увеличение внутренней энергии связано с ослаблением ближнего порядка, или с уменьшением числа водородных связей, или с внутренними напряжениями между цепями и кристаллитами. Наличие межмолекулярных сил значительной амплитуды в ориентированных полимерах можно подтвердить рядом оптических, спектроскопических и механических экспериментов. В частности, достойны внимания следующие результаты. Веттегрень и др. [70] отметили, что для полностью термообработанной пленки ПЭТФ максимум полосы поглощения, характерный для колебаний основной цепи, приходится на 975 см-1, в то время как для ориентированной пленки ПЭТФ он соответствует 972 см^1. Ланн и Яннас [71] нашли, что полоса несимметричных колебаний участка цепи с метальными группами с максимумом при

в ориентированных полимерах.— Механика полимеров, 1970, т. 6, № 1, с. 43—47. Кнопов В. М., Куксенко В. С., Слуцкер А. И. Влияние субмикроскопического трещинообразования на релаксационные явления в полимерах.— Механика полимеров, 1970, т. 6, № 3, с. 387—392.

Механизм процесса роста и смыкания микротрещин в ориентированных полимерах основан на молекулярной модели микротрещины (рис. VI. 17). Разрыв связей в вершине трещины, независимо от типа связей, происходит с переходом потенциальной энергии через барьер U (рис. VI. 18). Обратный процесс — рекомбинация связей — сопровождается переходом через барьер U'. Эта схема для удобства последующего изложения приведена для микротрещины в разгружаемом образце (0 = 0).

После образования зародышевых субмикроскопических трещин дальнейшее развитие разрушения в кристаллических ориентированных полимерах приводит к слиянию этих трещин и образованию за счет этого более крупных магистральных трещин, завершающих разрушение. Трещины субмикроскопических размеров 1—10 нм наиболее отчетливо наблюдаются у кристаллических ориентированных полимеров, например у полимерных волокон, тогда как трещины следующего уровня — микроскопических размеров (от единиц до десятков микрометров)—наиболее характерны для аморфных неориентированных полимеров (ПММА, ПС и т. п.), где с течением времени на поверхности нагруженных образцов возникает огромное число микротрещин, которые могут быть трещинами «серебра». Изучение кинетики трещинообразования показало, что оно является затухающим во времени процессом, как и накопление разорванных связей или субмикротрещин.

В ориентированных полимерах наиболее часто встречающимися типами структуры являются фибриллярные кристаллы.

В одноосно ориентированных полимерах дихроичное отношение находят путем измерения интенсивностей при направлении ориентации сначала параллельно, а затем перпендикулярно оси эталонного образца члапример, направлении вытяжки).

Наиболее распространенной характеристикой степени ориентации является величина со$!6, где 6 — угол между осью данного участка структурного элемента и осью ориентации образца. В аморфных ориентированных полимерах ориентация никогда не бывает полной и созгО редко достигает 0,5. Это связано, в первую очередь, со стерическими затруднениями для перегруппировок и с высокой подвижностью макромолекул.

ницаемости в ориентированных полимерах. Для про-

1. Детальное исследование микроструктуры полимерных цепей с помощью аппаратуры высокого разрешения. Метод ЯМР позволяет определить порядок присоединения мономерных единиц в цепи, характер и степень стереорегулярности полимера. Для изучения упаковки макромолекул сравнивают теоретические и экспериментальные значения второго момента спектральной линии. По соотношению узкой и широкой компонент линии поглощения можно определить динамическую степень кристалличности полимеров. Величина второго момента в ориентированных полимерах дает возможность судить об ориентации молекулярных цепей. Особо следует отметить, что ЯМР позволяет определить положение водородных атомов [5].

Имеется ряд путей преодоления этих трудностей. Важно исследовать температурную зависимость спектров: при повышении температуры увеличивается интенсивность молекулярных движений, усредняющих анизотропную часть СТВ и g-фактора. Это приводит к сужению линий ЭПР и заметному упрощению спектров. Кроме того, при повышении температуры часть радикалов - наименее устойчивых - погибает, что также упрощает спектры. Большие преимущества имеет исследование радикалов в ориентированных полимерах. Изучая ориентационную зависимость спектров ЭПР, можно получить значения главных компонентов СТВ и g-фактора.

Высокоупорядоченные структуры, например ориентированные жидкие кристаллы, вызывают ориентацию введенных в них радикалов; при этом наблюдается изменение положения линий СТС в спектре ЭПР. В ориентированных полимерах - полиэтилене, полипропилене, натуральном каучуке - этот эффект не наблюдается. Хотя анизотропия вращения возрастает, однако влияние ориентации полимера не настолько велико, чтобы привести к ориентации радикала. Растяжение некристаллизующихся каучуков до 500-600 % не приводит к изменению частот и анизотропии вращения парамагнитного зонда. Ориентация сказывается на молекулярной подвижности эластомеров, если она вызывает процесс кристаллизации.

По-видимому, представляют интерес два результата расчетов, имеющие отношение к влиянию ориентации полимерной сетки на концентрацию дефектов и прочность: интервал углов ориентации молекул, в пределах которого наиболее вероятно разрушение элементов, узок, а увеличение прочности в результате лучшей одноосной ориентации ограничено. Первый эффект для случайно ориентированных полимерных сеток представлен на рис. ЗЛО, где первоначальное распределение элементов

Эти формальные расчеты нуждаются в обсуждении. Журков развил свою кинетическую теорию разрушения, исходя из хорошего совпадения между значением ?/о и энергией диссоциации слабейшей связи основной цепи для многих исследованных им (большей частью ориентированных) полимерных материалов. В этой теории предполагается, что все существенные параметры, от которых зависит разрушение материала, не только связаны с разрывом основных связей, но даже регулируются ими, а следовательно, зависят от ?/о и to- В качестве существенных факторов, от которых зависит разрушение мате-

О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы *, но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс 3-Ю3—15-Ю3, т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формования и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов.

же стремится к нулю. Теплопроводность полимеров зависит от их химического строения в пределах одного и того же физического состояния. Для аморфных стеклообразных полимеров теплопроводность несколько ниже, чем для кристаллических. На температурную зависимость теплопроводности влияет химическое строение полимера. Для одного ряда полимеров наклон этой зависимости положительный, для другого - отрицательный. В области физического перехода из стеклообразного состояния в высокоэластическое наблюдается слабый максимум теплопроводности. В табл.53 приведены значения теплопроводности для ряда полимеров различного химического строения, из которой видно, каким образом химическое строение влияет на теплопроводность. Особое значение имеет такое свойство полимеров, как анизотропия теплопроводности. Это свойство характерно для ориентированных полимерных систем, в которых теплопроводность различна вдоль и поперек оси ори-ентации.Подробнее с теплофизическими свойствами полимеров можно познакомиться в работах [59, 61, 62].

При исследовании ориентированных полимерных пленок на светорассеяние может оказывать влияние двойное лучепреломление. В этих случаях анализ следует проводить в таких условиях, чтобы направление ориентации, образующее угол О (рис. 35.11) с вертикалью, совпадало с направлением поляризации поляризатора или анализатора (г?1 = О или \>1 = Й + 900). Картина рассеяния от двухосно ориентированных пленок зависит от угла Ф между нормалью к пленке и падающим пучком света. Установка образца должна обеспечивать возможность его вращения вокруг его нормали на угол О и наклона на угол Ф (рис. 35.11)..

XVI. 6. Динамические эффекты в ориентированных полимерных

При исследовании ориентированных полимерных пленок на светорассеяние может оказывать влияние двойное лучепреломление. В этих случаях анализ следует проводить в таких условиях, чтобы направление ориентации, образующее угол Q (рис. 35.11) с вертикалью, совпадало с направлением поляризации поляризатора или анализатора (\)i = Q или ty\ = Q + 90°). Картина рассеяния от двухосно ориентированных пленок зависит от угла Ф между нормалью к пленке и падающим пучком света. Установка образца должна обеспечивать возможность его вращения вокруг его нормали на угол Q и наклона на угол Ф (рис. 35.11).,

Релаксационные явления играют очень существенную роль при производстве высокопрочных волокон, пленок и других ориентированных полимерных изделий *. С одной стороны, время релаксации должно быть небольшим, так как только в этом случае обеспечиваются достаточно быстрые выпрямления и ориентация макромолекул без разрушения образца. С другой стороны, ориентированные высокомолекулярные тела являются термодинамически неравновесными системами, стремящимися к самопроизвольной дезориентации, поэтому для сообщения полимеру устойчивой упорядоченной структуры необходимо большое время релаксации.

Релаксационные явления играют очень существенную роль при производстве высокопрочных волокон, пленок и других ориентированных полимерных изделий *. С одной стороны, время релаксации должно быть небольшим, так как только в этом случае обеспечиваются достаточно быстрые выпрямления и ориентация макромолекул без разрушения образца. С другой стороны, ориентированные высокомолекулярные тела являются термодинамически неравновесными системами, стремящимися к самопроизвольной дезориентации, поэтому для сообщения полимеру устойчивой упорядоченной структуры необходимо большое время релаксации.

Отмеченная закономерность сильно ограничивает применение пластификаторов для понижения хрупкости органических стекол при низких температурах, при которых снижение Тср или Тс сопровождается значительным уменьшением теплостойкости и прочности. Более перспективным представляется использование сополимеров (при соответствующем подборе компонентов) и, возможно, применение в некоторых случаях ориентированных полимерных систем. ~

В рассматриваемом случае отождествляются релаксационные характеристики процессов перегруппировки элементов структуры, сопровождающие развитие обратимой деформации, и «проскальзывание» макромолекул или надмолекулярных образований в процессе разрушения эластомера. С. Н. Журков и В. Е. Корсуков [572, с. 2071—2080] показали, что прочность и долговечность сильно ориентированных полимерных тел определяются закономерностями кинетики накопления разрывов химических связей. Получить такой результат, экспериментируя с эластомерами или хотя бы с -неориентированными пслсссткоцеянътн-^гюлимерамн, никому не удавалось. Для подтверждения того, что кинетика разрыва полимеров определяется накоплением разорванных химических связей, С. Н. Журков и В. Е. Корсуков использовали результаты работ [574—577]. Ими изучалась кинетика накопления разорванных химических связей в сильно ориентированных полимерах, подвергнутых действию разрушающей нагрузки. По изменению интенсивности селективных полос поглощения в инфракрасной области спектра оценивали распад химических связей. Снимали спектры с помощью двулучевого спектрофотометра DS-403G.




Основании изложенного Основании многочисленных Основании предположения Основании проведенных Основании сопоставления Основании вышеизложенного Основании уравнений Основными элементами Основными компонентами

-
Яндекс.Метрика