Главная --> Справочник терминов


Особенностей реакционной Известно, что свойства любого твердого тела определяются строением и взаимным расположением образующих его молекул. В течение ряда лет считали, что все физические свойства полимерных тел полностью определяются строением макромолекул (молекулярной массой, гибкостью цепей). Большая заслуга в объяснении механических свойств полимеров на структурной основе принадлежит советским ученым и в первую очередь академику В. А. Картину, который установил, что одной из важнейших особенностей полимеров является многообразие их надмолекулярных структур. Если термин «строение полимеров» характеризует общие черты молекулярной упорядоченности (определенным образом расположенных друг относительно друга макромолекул), то термин «структура полимеров» характеризует более детальные отличия молекулярной упорядоченности в полимерах.

Одной из наиболее характерных и важных особенностей полимеров с карборановыми группами в цепи является образование макросетчатых систем, что определяется как способом введения карборановых групп в макромолекулы и их химическим обрамлением, так и структурой соответствующих полимеров.

Одной из особенностей полимеров являются большие значения их молекулярных масс (от многих тысяч до нескольких миллионов), которые обусловливают необычные и ценные свойства полимеров. Кроме того, полимеры состоят из макромолекул различной длины, т. е. они неоднородны по молекулярной массе. Значение молекулярной массы полимера, определенное каким-либо методом, является усредненной величиной.

Все сказанное выше свидетельствует о том, что различные параметры не одинаково чувствительны к изменению структуры полимерных систем под влиянием деформирования. Это позволяет эффективно использовать механические измерения для опенки структурных особенностей полимеров.

Все сказанное выше свидетельствует о том, что различные параметры не одинаково чувствительны к изменению структуры полимерных систем под влиянием деформирования. Это позволяет эффективно использовать механические измерения для опенки структурных особенностей полимеров.

Все сказанное выше свидетельствует о том, что различные ПЕ раметры не одинаково чувствительны к изменению структуры под! мерных систем под влиянием деформирования. Это позволяв эффективно использавагь механические измерения для оценк структурных особенностей полимеров.

С учетом этих и ряда других особенностей полимеров к ним можно применять все закономерности, свойст-зенные фазовому равновесию в смесях низкомолекулярных веществ. Так же, как и для последних, для систем с участием полимерных компонентов характерны зсе три основных вида диаграмм состояния: аморфное равновесие, кристаллическое равновесие и смешанное аморфно-кристаллическое равновесие. Области однофазного молекулярного раствора сменяются при изменении температуры или при количественном соотношении компонентов областями двухфазного состояния, в которых система распадается на две аморфные фазы (два взаимных раствора компонентов) или на фазу насыщенного эаствора полимера в растворителе над фазой кристаллического полимера.

В предыдущих главах уже указывалась одна из специфических особенностей полимеров, отличающая их от низкомолекулярных веществ, а именно полимолекуляр-ность. В силу этой особенности кривые фазового равновесия в действительности представляют собой не одиночные линии, а области, ширина которых зависит от молекулярно-весового распределения полимера. Схематически вид кривых равновесия для полимолекулярного полимера был приведен на рис. 14.

Большинство экспериментальных данных по удельной теплоемкости полимеров относится к интервалу температур, нижняя граница которого соответствует температуре жидкого водорода (~20 К), а верхняя — температуре плавления. Этот интервал температур оказывается достаточным, чтобы по измеренным значениям удельной теплоемкости рассчитать основные термодинамические параметры полимеров (энтальпию, энтропию), имеющие важное техническое значение. Между тем, чтобы выяснить механизм теплоемкости полимеров, наиболее важны измерения, проведенные при более низких температурах. Измерение теплоемкости полимеров в интервале температур от 1 до 20 К представляет наибольший интерес для сопоставления экспериментальных данных с теоретическими расчетами, а также для выяснения тех особенностей полимеров, которые отличают их от низкомолекулярных твердых тел. Попытки экстраполировать значения удельной теплоемкости полимеров, измеренные при 20 К, на область более низких температур, как правило, не приводят к содержательным результатам.

Одной из замечательных особенностей полимеров 'являются их резко выраженные вязкоупру-гие свойства. Вязкоупругое поведение обусловливает уникальный комплекс основных физико-механических свойств полимеров. Известно, что для большинства твердых тел, особенно в случае очень малых деформаций, выполняется закон Гука в его наиболее простой форме:

Как указывалось в разделе 2.2, одна из наиболее интересных особенностей полимеров состоит в том, что они могут проявлять весь ряд промежуточных свойств в зависимости от температуры и экспериментально выбранной временной шкалы.

Для объяснения особенностей реакционной способности циклических систем Браун предложил в начале 50-х годов концепцию «I-напряжения» (так Браун условно обозначил суммарное напряжение). Сущность этой концепции проста: облегчены те реакции, для которых в переходном состоянии или в конечном продукте I-напряжение меньше, чем в исходном веществе. Изменения I-напряжения Браун связывал прежде всего с изменениями состояния гибридизации углеродного атома в ходе реакции. Так, при восстановлении кетонов тригональный 5р2-гибридизованный атом углерода превращается в тетраэдрический. В зависимости от природы кетона эта реакция

-о Не менее выразительный пример первостепенной роли синтеза в разви-ки теоретических представлений может быть найден в истории полного и астичного синтез стероидных гормонов и их аналогов. Исследователи, «бегавшие в этой области в 1930—40-х годах, встретились с рядом неожи-(вниых проблем как при построении углеродного скелета, так и при осуще-явпении некоторых иногда вполне тривиальных превращений, таких, как цмюоединение по связи С=С или С=0, раскрытие оксиранового цикла или цже превращение спиртов в соответствующие галогенопроизводные. Потребности синтеза не только заставили химиков разработать альтернативные втоды, позволявшие осуществлять такие превращения, но и побудили об-ититъся к изучению причин наблюдаемых аномалий. *ч?Именно благодаря глубокому анализу особенностей реакционной спо-Юбности функциональных групп в конформационно закрепленных систе-OR (а к таким системам относится тетрациклический остов стероидов) и Двнось сформулировать основные понятия современного конформацион-юго анализа. Напомним, что еще в 1890 г. Заксе [32а] предположил, что цик-вгексан не является плоской молекулой и сделач вывод о том, что «все мо-воамещенные производные циклогексана могут существовать по крайней нвре в виде двух модификаций». Поскольку в то время не имелось никаких ^сспериментальных данных в пользу этого, вообще говоря, вполне разумно-»иредположения (вспомним, хотя бы тот факт, что к этому моменту тетра-Щрическая модель атома углерода Вант-Гоффа и Ле Беля уже была общепри-ятой), о нем никто особенно и не вспоминал в последующие 60 лет, хотя за *> Время появился ряд теоретических и физико-химических исследований, вццетелъствовавших о правомерности подобного рассмотрения. Но в полюй мере прозорливость предположения Заксе могла быть оценена лишь Книге публикации в 1950г в журнале Experientia короткого сообщения под ^званием «Conformation of the Steroid Nucleus» [32b]. Автор этой работы вртон проделал огромную работу по сбору и обобщению многочисленных и асто противоречивых данных по реакционной способности различных за-

Еще одно преимущество внутримолекулярного варианта реакции Посо-на—Кханда состоит в возможности достаточно быстрой сборки требуемых субстратов с использованием специфических особенностей реакционной способности ц-алкиндикобальтгексакарбонильных комплексов. Как мы уже отмечали ранее (см. разд. 2,2.3.6., схемы 2.43 и 2.44), превращение ацетиленового фрагмента в алкиндикобальтгексакарбонильный комплекс приводит к резкому повышению стабильности соответствующих пропаргильных катионов, и последние могут служить активными электро филами в реакциях с различными С-нуклеофилами (реакция Николаса, см., например, [18а]). На схеме 2.137 показана схема выполненного Шрайбером [341] короткого синтеза триииклического соединения 409 из ациклического субстрата 410, в которой исчерпывающим образом использованы химические свойства алкиндико-бальтгексакарбонильных комплексов. В самом деле сначала этот фрагмент «работает» на стабилизацию пропаргильного катиона 410а, что позволяет использовать последний для внутримолекулярного пропаргилирования имеющегося в структуре аллилсиланового остатка, приводящего к циклооктино-вому производному 411. На следующей стадии этот же фрагмент выступает в роли реагирующей функции по внутримолекулярной циклизации Посона— Кханда, которая в данном случае протекает с высокой стерсоселсктивностью.

Некоторые особенности реакционной способности трехчленных циклов были замечены уже давно. Среди них хорошо известное явление — способность циклопропанов легко претерпевать разрыв связи С—С путем гидроге-нолиза или при действии протонных кислот или галогенов, причем в очень мягких условиях. Эти наблюдения потребовали создания новой концепции — существования в этих соединениях изогнутых связей, так называемых «банановых орбиталей». Успешный синтез специально спроектированных пропелланов с малыми циклами обеспечивает дополнительные возможности для изучения необычных структурных эффектов и реакционной способности трехчленных циклов, включенных в такие максимально «странные», но тем не менее существующие структуры. До сих пор не было выработано вполне удовлетворительного объяснения тех особенностей реакционной способности, которые мы обсуждали выше. Эта задача остается вызовом для теоретиков, а ее решение может привести к ревизии или, по меньшей мере к уточнению самой концепции химической связи.

. -о Не менее выразительный пример первостепенной роли синтеза в разви-ши теоретических представлений может быть найден в истории полного и чиличного синтез стероидных гормонов и их аналогов. Исследователи, работавшие в этой области в 1930—40-х годах, встретились с рядом неожиданных проблем как при построении углеродного скелета, так и при осуще-пвпении некоторых иногда вполне тривиальных превращений, таких, как присоединение по связи С=С или С=О, раскрытие оксиранового цикла или даже превращение спиртов в соответствующие галогенопроизводные. Потребности синтеза не только заставили химиков разработать альтернативные методы, позволявшие осуществлять такие превращения, но и побудили обратиться к изучению причин наблюдаемых аномалий. '«•Именно благодаря глубокому анализу особенностей реакционной способности функциональных групп в конформационно закрепленных системе (а к таким системам относится тетрациклический остов стероидов) и удалось сформулировать основные понятия современного конформацион-ного анализа. Напомним, что еще в 1890 г. Заксе [32а] предположил, что цик-Явгексан не является плоской молекулой и сделал вывод о том, что «все мо-рвзамещенные производные циклогексана могут существовать по крайней мере в виде двух модификаций». Поскольку в то время не имелось никаких зйсеперименталъных данных в пользу этого, вообще говоря, вполне разумно-даиредположения (вспомним, хотя бы тот факт, что к этому моменту тетра-ввфическая модель атома углерода Вант-Гоффа и Ле Беля уже была общепринятой), о нем никто особенно и не вспоминал в последующие 60 лет, хотя за ЯЛ» Время появился ряд теоретических и физико-химических исследований, ^ивДетельствовавших о правомерности подобного рассмотрения. Но в пол-Ной мере прозорливость предположения Заксе могла быть оценена лишь ЙЬсле публикации в 1950г в журнале Experientia короткого сообщения под ВДЗйанием «Conformation of the Steroid Nucleus» [32b]. Автор этой работы ? ЭДрягон проделал огромную работу по сбору и обобщению многочисленных и 1всто противоречивых данных по реакционной способности различных за-&

Еще одно преимущество внутримолекулярного варианта реакции Посо-на—Кханда состоит в возможности достаточно быстрой сборки требуемых субстратов с использованием специфических особенностей реакционной способности ц-алкиндикобальтгексакарбонильных комплексов. Как мы уже отмечали ранее (см. разд. 2.2.3.6., схемы 2.43 и 2.44), превращение ацетиленового фрагмента в алкиндикобалытексакарбонильный комплекс приводит к резкому повышению стабильности соответствующих пропаргильных катионов, и последние могут служить активными электрофилами в реакциях с различными С-нуклеофилами (реакция Николаса, см., например, [18а]). На схеме 2.137 показана схема выполненного Шрайбером [341 ] короткого синтеза трициклического соединения 409 из ациклического субстрата 410, в которой исчерпывающим образом использованы химические свойства алкиндико-бальтгексакарбонильных комплексов. В самом деле сначала этот фрагмент «работает» на стабилизацию пропаргильного катиона 410а, что позволяет использовать последний для внутримолекулярного прогаргилирования имеющегося в структуре аллилсиланового остатка, приводящего к циклооктино-вому производному 411. На следующей стадии этот же фрагмент выступает в роли реагирующей функции во внутримолекулярной циклизации Посона— Кханда, которая в данном случае протекает с высокой стерсоседсктивностью.

Некоторые особенности реакционной способности трехчленных циклов были замечены уже давно. Среди них хорошо известное явление — способность циклопропанов легко претерпевать разрыв связи С-С путем гидроге-нолиза или при действии протонных кислот или галогенов, причем в очень мягких условиях. Эти наблюдения потребовали создания новой концепции — существования в этих соединениях изогнутых связей, так называемых «банановых орбиталей». Успешный синтез специально спроектированных пропелланов с малыми циклами обеспечивает дополнительные возможности для изучения необычных структурных эффектов и реакционной способности трехчленных циклов, включенных в такие максимально «странные», но тем не менее существующие структуры. До сих пор не было выработано вполне удовлетворительного объяснения тех особенностей реакционной способности, которые мы обсуждали выше. Эта задача остается вызовом для теоретиков, а ее решение может привести к ревизии или, по меньшей мере к уточнению самой концепции химической связи.

Именно благодаря глубокому анализу особенностей реакционной способности функциональных групп в конформационно закрепленных системах (а к таким системам относится тетрациклический остов стероидов) и удалось сформулировать основные понятия современного конформацион-ного анализа. Напомним, что еще в 1890 г. Заксе [32а] предположил, что цик-логексан не является плоской молекулой и сделал вывод о том, что «все мо-нозамещенные производные циклогексана могут существовать по крайней мере в виде двух модификаций». Поскольку в то время не имелось никаких экспериментальных данных в пользу этого, вообще говоря, вполне разумного предположения (вспомним, хотя бы тот факт, что к этому моменту тетра-эдрическая модель атома углерода Вант-Гоффа и Ле Беля уже была общепринятой), о нем никто особенно и не вспоминал в последующие 60 лет, хотя за это время появился ряд теоретических и физико-химических исследований, свидетельствовавших о правомерности подобного рассмотрения. Но в полной мере прозорливость предположения Заксе могла быть оценена лишь после публикации в 1950г в журнале Experientia короткого сообщения под названием «Conformation of the Steroid Nucleus» [32b]. Автор этой работы Бартон проделал огромную работу по сбору и обобщению многочисленных и часто противоречивых данных по реакционной способности различных за-

Еще одно преимущество внутримолекулярного варианта реакции Посо-на—Кханда состоит в возможности достаточно быстрой сборки требуемых субстратов с использованием специфических особенностей реакционной способности ц-алкиндикобальтгексакарбонильных комплексов. Как мы уже отмечали ранее (см. разд. 2.2.3.6., схемы 2.43 и 2.44), превращение ацетиленового фрагмента в алкиндикобальтгексакарбонильный комплекс приводит к резкому повышению стабильности соответствующих пропаргильных катионов, и последние могут служить активными электрофилами в реакциях с различными С-нуклеофилами (реакция Николаса, см., например, [18а]). На схеме 2.137 показана схема выполненного Шрайбером [341] короткого синтеза трициклического соединения 409 из ациклического субстрата 410, в которой исчерпывающим образом использованы химические свойства алкиндико-бальтгексакарбонильных комплексов. В самом деле сначала этот фрагмент «работает» на стабилизацию пропаргильного катиона 410а, что позволяет использовать последний для внутримолекулярного пропаргилирования имеющегося в структуре аллилсиланового остатка, приводящего к циклооктино-вому производному 411. На следующей стадии этот же фрагмент выступает в роли реагирующей функции во внутримолекулярной циклизации Посона— Кханда, которая в данном случае протекает с высокой стереоселективностью.

Некоторые особенности реакционной способности трехчленных циклов были замечены уже давно. Среди них хорошо известное явление — способность циклопропанов легко претерпевать разрыв связи С—С путем гидроге-нолиза или при действии протонных кислот или галогенов, причем в очень мягких условиях. Эти наблюдения потребовали создания новой концепции — существования в этих соединениях изогнутых связей, так называемых «банановых орбиталей». Успешный синтез специально спроектированных пропелланов с малыми циклами обеспечивает дополнительные возможности для изучения необычных структурных эффектов и реакционной способности трехчленных циклов, включенных в такие максимально «странные», но тем не менее существующие структуры. До сих пор не было выработано вполне удовлетворительного объяснения тех особенностей реакционной способности, которые мы обсуждали выше. Эта задача остается вызовом для теоретиков, а ее решение может привести к ревизии или, по меньшей мере к уточнению самой концепции химической связи.




Остаточной влажности Остаточного растворителя Оставшуюся маслянистую Обработке гидразином Оставаться постоянной Осторожным окислением Осторожном нагревании Обработке хлорокисью Осторожно нейтрализуют

-
Яндекс.Метрика