Главная --> Справочник терминов


Отчетливо проявляются По всей видимости, следует считать, что собственно высокомолекулярное соединение "начинается" только с того момента, когда отчетливо проявляется способность макромолекул к разнообразным обратимым конформационным переходам, причем эти переходы могут быть описаны вероятностными функциями.

Различие механизмов радикальной, ионной и анионной полимеризации отчетливо проявляется в составе сополимеров, полученных из одной и той же пары мономеров. Значения г\ и г2 (а следовательно, QVL ё) изменяются при изменении механизма реакции. Ниже приводятся примерные ряды активности мономеров при ионной сополимеризации:

Вынужденная эластичность при сдвиге, т. е. начало сильных межсегментальных смещений в неориентированном термопласте, отчетливо проявляется на кривой напряжение—деформация. В испытаниях на растяжение обычно имеет место падение условного напряжения, а точку вынужденной эластичности определяют как точку максимума нагрузки (рис. 2.10, кривые б и е). В других видах испытания, например в испытаниях на сжатие, может происходить падение нагрузки или его может не быть совсем, но всегда можно отметить резкое уменьшение do/de. Важное явление вынужденной эластичности интенсивно исследовалось. Обзорные статьи по данному вопросу публиковались в последние годы почти ежегодно, например [114, 154—164].

Природа высокой эластичности обусловлена гибкостью полимерных цепей, которая отчетливо проявляется, когда тепловое движение достаточно интенсивно, а межмолекулярные взаимодействия слабы [14, с. 54]. Ничтожно малая по величине упругая деформация полимера связана с изменением средних расстояний между атомами и деформацией валентных углов полимерной цепи, а высокоэластическая — с ориентацией и перемещением звеньев гибких цепей без изменения среднего расстояния между цепями.

. штабе времени структура полимеров хорошо описывается моделью хаотически переплетенных цепей. Молекулярная сетка, обусловленная переплетениями макромолекул, отчетливо проявляется в опытах по вытяжке полимеров, например полиметилметакрилата, причем плотность сетки повышается с понижением температуры. В процессе течения в узлах происходит проскальзывание цепей, разруше-

тепловое движение не может преодолеть это взаимодействие и незакрепленный образец не сокращается, а в закрепленном не возникают внутренние напряжения. При повышении температуры тепловое движение уже способно преодолеть тормозящее вандер-ваальсово взаимодействие и образец стремится сократиться. Для поддержания постоянного удлинения требуется приложить растягивающее напряжение, что в методе изометрического нагрева делается автоматически; это внешнее напряжение, естественно, в точности равно развивающемуся внутреннему. Величина его будет расти с дальнейшим повышением температуры. На этой стадии распад самой сетки идет медленно и практически не сказывается ' на величине растущего напряжения. Наконец, при достаточно высокой температуре отчетливо проявляется и второй процесс, приводящий уже к релаксации напряжения и проявлению на диаграммах изометрического нагрева a = f(T) максимума. При дальнейшем повышении температуры преобладает процесс распада сетки и напряжение релаксирует до нуля, что, как уже отмечалось, эквивалентно течению.

Несколько особняком в группе устоявшихся проблем стоят вопросы, связанные с принципиальными различиями в поведении жеётко- и гибкоцепных полимеров. Можно считать установленным существование критериального параметра гибкости цепей f, хотя о его точном численном значении можно спорить. В равной мере — и здесь наиболее отчетливо проявляется (для круга рассмотренных проблем — ср. Заключение к гл. VI) вмешательство кинетики в термодинамику — можно считать установленным, что параметр гибкости способен изменяться под действием механических или иных внешних полей, после чего поначалу гибкоцепная система начинает вести себя наподобие жесткоцепной, и наоборот. В этом состоит принцип эквивалентности термокинетики, сводящий кристаллизацию полимеров к теории Флори, играющей в данном случае роль леммы [22].

Различие между Тс и Тм отчетливо проявляется на температурной зависимости динамического модуля Юнга (рис. 2.6). Ниже Т0 полимер находится в стеклообразном состоянии и температурная зависимость lg? слабо выражена, как и у любого твердого тела. Выше Тс наблюдается более резкая зависимость логарифма модуля упругости от температуры в связи с тем, что в структурно-жидком состоянии структура полимера непрерывно изменяется с температурой. При дальнейшем увеличении температуры в области, где время релаксации снижается до величин, сравнимых с периодом колебаний, в полимерах проявляется высокоэластическая деформация. Амплитуда деформации полимера с увеличением температуры возрастает до тех пор, пока не достигнет предельного значения, а модуль — весьма низкого значения (например, для полимеров модуль одноосного сжатия в стеклообразном состоянии Е0 примерно в 103—104 раз больше, чем соответствующий модуль в высокоэластическом состоянии).

Природа высокой эластичности объясняется гибкостью полимерных цепей, которая отчетливо проявляется при достаточно интенсивном тепловом движении. Ничтожно малая упругая деформация полимера связана с изменением средних расстояний между атомами и деформацией валентных углов полимерной цепи, а высокоэластическая — с ориентацией и перемещением звеньев гибких це-цей без изменения среднего расстояния между цепями.

Природа высокой эластичности объясняется физическими свойствами цепных молекул. Их основным свойством является внутреннее вращение связей, приводящее к гибкости и легкой свертываемости полимерных цепей. Гибкость отчетливо проявляется, когда тепловое движение достаточно интенсивно. В стеклообразном состоянии деформация связана с изменением средних расстояний между атомами и деформацией валентных углов полимерной цепи, в высокоэластическом — с ориентацией и перемещением звеньев гибкой цепи без изменения среднего расстояния между цепями.

Когда структура полимера становится однородной, при низких скоростях происходит медленное течение и перемещение центров тяжести макромолекул, как у простых жидкостей, а при больших напряжениях Р оно распределяется по узлам структуры, вызывая, как и у резины, скольжение по стенкам (при этом критическое значение \>к зависит от М). В случае полидисперсного полимера картина будет иной, но также имеет место проявление критического напряжения Рк. Для линейных полимеров характерна сложная зависимость вязкости от М, причем значения ц при значениях М ниже и выше Мк отличаются. Сверханомалия вязкости отчетливо проявляется в случае узких распределений М, а для полимеров с широким распределением молекулярной массы проявляется существенная зависимость y=f(M) и более размытое явление сверханомалии [6.7]. При этом и для последних существует критическое напряжение, выше которого установившееся течение становится невозможным.

В этой главе рассматривается явление растворимости веществ в надкритических газах и жидкостях, сжатых до относительно высоких плотностей, при которых уже отчетливо проявляются силы молекулярного взаимодействия между компонентами растворяемого вещества и растворителя. Отсюда следует, что в основе растворимости веществ в надкритических флюидах лежит то же явление, что и при образовании жидких растворов, растворение веществ в надкритическом флюиде сопровождается, как правило, изменением объема и тепловым эффектом, так же как и у жидких растворов.

Существенным фактором, определяющим свойства получаемого катализатора даже при хорошо отработанной рецептуре, является рациональная технология его производства. Разработка технологии, в свою очередь, предполагает знание особенностей формирования свойств катализатора на основных стадиях производства. Как будет показано в дальнейшем, эти положения особенно отчетливо проявляются в случае многостадийной технологии, присущей производству катализатора ФКД-Э.

Поглощения, обусловленные колебаниями оксигруппы, отчетливо проявляются в ИК-спектрах. В области 3600 еж".1 появляется узкая полоса валентных колебаний группы О—Н. При наличии межмолекулярных водородных связей, обнаруживается еще широкая полоса в области 3400—3200 см 1.

Кривая РТЛ для полиизобутилена (ПИБ) (рис. 9.2) характеризуется двумя максимумами свечения. Для ПИБ отчетливо проявляются два перехода, которые относятся к процессам стеклования и вращения метальных групп. Максимум РТЛ при Т = — —52° С, который очень хорошо согласуется с данными термомеханических измерений, соответствует температуре стеклования исследуемого эластомера. Его обозначают как а-максимум и относят к некристаллическим областям полимера. Ниже темпера-

Термическая обработка образцов ПЭ приводит к изменениям температурных положений максимумов свечения. Кривая высвечивания образца ПЭСД, который был расплавлен и выдерживался при 100° С в течение 6 ч (рис. 9.7), имеет существенные отличия по сравнению с исходным ПЭСД. Структурные изменения в ПЭСД, сопровождающиеся увеличением степени кристалличности, отчетливо проявляются на кривой высвечивания РТЛ .низкотемпературный максимум резко увеличился, а высокотемпературный — уменьшился).

где п — порядок отражения рентгеновских лучей (обычно отчетливо проявляются рефлексы первого порядка, т. е. «= 1); А— длина волны фильтрованного рентгеновского излучения (для медного зеркала анода трубки К = 0,154 нм); d — межплоскостное расстояние; ft — угол отражения рентгеновских лучей, который можно определить по схеме хода лучей при дифракции в цилиндрической камере (рис. VI. 22).

Лллильная атака -- это осложнение в реакции присоединения не только потому, что вводит конкурирующую побочную реакцию, но и потому, что может привести к обрыву кинетических цепей, а следовательно, и к уменьшению суммарного выхода продукта реакции. Образующийся аллильный радикал сильно стабилизирован и результате резонанса, поэтому он может и не вступать и реакцию с алдендом А — 0, накапливаясь в системе до тех пор, пока не исчезнет в результате реакций бимолекулярной конденсации или диспропорционирования. Эти затруднения отчетливо проявляются в реакциях присоединения к цикло]сксену. Четырсххло-ристый углерод дает лишь очень низкие ныходы любого возможного продукта реакции, тогда как бромтрихлорметап вступает в быструю реакцию с длинными кинетическими цепями. В данном случае аллильные радикалы нновь вступают и -цепную реакцию но уравнению

На рис. 7.2 отчетливо проявляются два случая синергизма для бинарной смеси антиоксидантов, имеющего место только при

(сильных групп в указанный сополимер приводит к тому, что возникают водородные связи между сополимером и поликарбонатом, что приводит к рез-юму улучшению совместимости. На термограммах, полученных методом ДСК цля смесей полистирола с поликарбонатом отчетливо проявляются две тем-[тературы стеклования, что свидетельствует о несовместимости этих полимеров. Картина резко меняется, когда вместо полистирола в смесь вводится со-голимер указанного выше строения: на термограммах проявляется одна температура стеклования (что свидетельствует о совместимости), при этом температура стеклования закономерно увеличивается с ростом концентрации поликарбоната. Смеси сополимера указанного выше строения с полиэтиле-ноксидом (ПЭО), который является кристаллическим полимером, также проявляют этот эффект [210]. Кристалличность ПЭО изменяется в смеси таким образом, что температура плавления снижается. Образование водородных связей между ПЭО и сополимером изучалось в зависимости от температуры, По мере повышения температуры водородные связи между сополимером и ПЭО диссоциируют, но при охлаждении вновь восстанавливаются. Даже в случае кристаллического полимера, такого как ПЭО, наличие водородного связывания между цепями смешиваемых полимеров приводит к улучшению их совместимости, подавлению кристаллизации и образованию однофазной системы.

соли. И здесь отчетливо проявляются различия между (З-изомером,

Кроме того, все методы делятся на химические, физические и физико-химические [8]. На протяжении многих десятилетий, даже столетий, преобладали чисто химические методы, основанные на определении каких-либо атомов или групп атомов в составе данного вещества с помощью осаждения, взвешивания или титрования. Они могут быть качественными или количественными. Однако параллельно существовали, начиная со знаменитого опыта Архимеда по определению золота в короне, методы, которые мы сейчас называем физическими [4]. «Все дискуссии по поводу сходства и различия химических и физических методов, - писал академик И.П. Алимарин, - основываются на ортодоксальном понимании этих двух наук и нежелании рассматривать их с единых современных позиций о строении материи и ее свойствах. ... В науках (между науками) нет четких границ». На протяжении уже ряда десятилетий в развитии химии отчетливо проявляются тенденции к использованию различных физических методов исследования. «Я полагаю, что в науке нет области с более обещающими открытиями, чем исследование химических явлений на основе физических методов и физических явлений», - говорил известный английский физик Дж. Томсон, открывший в начале XIX века электрон.




Отщеплении бромистого Отбрасывают полученный Отдельные представители Определяемой уравнением Отдельных аппаратов Отдельных кристаллов Отдельных полимеров Отдельных процессов Отдельных составляющих

-
Яндекс.Метрика