Главная --> Справочник терминов


Обратимыми деформациями Ответ. Сложный композиционный состав белкового субстрата, чрезвычайно тонкая и сложная надмолекулярная и морфологическая организация волоса обусловливают возможность высоких обратимых деформаций при изменении влагосодержания. При этом изменяется также плотность волокна:

ностью; по крайней мере, это проявляется в том, что в потоке возникают деформации сдвига, величина которых не зависит от продольной координаты, поэтому на них не сказывается влияние изменяющихся в зависимости от величины Э градиентов скорости и рела-ксирующих деформаций. Более того, при малых значениях L/Reff в потоке расплава преобладают входовые деформации растяжения^, которые маскируют влияние зависящих от значения 6 полей скоростей обратимых деформаций сдвига. Дополнительным преимуществом являются малые потери давления в головках с короткой матрицей. Обтекаемая форма каналов так же необходима для головок со сложным профилем, как и для головок простой конфигурации. Поэтому применяют наборные пластинчатые матрицы, состоящие из тонких пластин, расположенных одна за другой [84]. Поперечное сечение канала в каждой пластине отличается от сечения в предыдущей пластине таким образом, чтобы обеспечить плавный переход расплава к последующей пластине. Такая конструкция допускает простую подгонку профиля поперечного сечения головки и облегчает ее изготовление. Для таких головок пока не существует даже приближенных уравнений расчета. На практике необходимую форму выходного отверстия получают многократным спиливанием металла с пластин.

Необходимо упомянуть о сравнительно недавно обнаруженном другом эффекте, также трактуемом в рамках классической термодинамики и получившем название «энергетической высокоэластичности». Суть эффекта заключается в том, что многие (вероятно, почти все) гибкоцепные полимеры, способные к образованию кристаллических морфоз типа сферолитов, способны и к проявлению больших (хотя и не столь больших, как «классические» каучуки и резины) ~ 100%-обратимых деформаций чисто энергетической, точнее энтальпийной природы. Примечательно, что деформации эти возникают при —70 °С и даже при погружении кристаллического полимера, например, полипропилена, в жидкий азот.

* Как эластическая, так и упругая деформация являются видами обратимой деформации. Первое понятие чаше применяют для характеристики больших обратимых деформаций в полимерах (десятки и сотни процентов), а второе — для малых обратимых деформаций твердых тел (доли процента или несколько процентов). Это деление условно: в английском языке, например, обоим понятиям соответствует единый термин elastic.

С общих позиций термодинамики проанализируем вид зависимости напряжения от деформации полимеров. Это необходимо сделать потому, что полимеры способны к большим обратимым деформациям, что отличает их от многих других хорошо изученных тел. Описание вида зависимости напряжения от деформации на основе законов термодинамики поможет глубже понять природу больших обратимых деформаций в полимерах.

В соответствии с изложенным выше вязкоупругость полиметил-метакрилата при 160°С такая же, как и вязкоупругость натурального каучука при —22°С. Если же практически наблюдаются различия в их свойствах, то они обусловлены главным образом различием в молекулярных массах сравниваемых полимеров, которые, как правило, у каучуков больше, чем у пластмасс. Поэтому даже при Г = ГС + 50СС каучуки способны к развитию больших обратимых деформаций и обнаруживают меньшую текучесть, чем пластмассы.

При течении всегда наблюдается необратимая деформация, Иногда она называется пластической. Для высокомолекулярных: соединений характерно наложение на деформации течения высоко-эластических, обратимых деформаций Этим такие соединения отличаются от низкомолекулярпых жидкостей. Высокоэластические деформации всегда ограничены по величине, тогда как необратимые деформации у полимеров в текучем состоянии могут нарастать во времени неограниченно. Системы, способные течь и одновременно проявлять упругость, называются упруго-вязкими, (стр. 159).

Еще в 30-х годах было показано, что аномально-вязкий характер течения полимерных растворов, так же как и салшх полимеров, связан с наложением на вязкое (необратимое) течение эластических (обратимых) деформаций. Концентрированные растворы полимеров представляют собою упруго-вязкую систему, и изучение их требует разделения обратимых и необратимых деформаций, а также исследования зависимости скорости от напряжения сдвига в широком диапазоне заданных величин е~9.

Первый резкий подъем на термомеханичесгой кривой связан с переходом полимера из твердого стеклообразного состояния в высокоэластическое. Это состояние характеризуется тем, что полимер приобретает каучукоподобные свойства, т.е. обладает способностью к развитию больших обратимых деформаций при действии небольшой силы. Это состояние характерно только для полимеров, и оно не проявляется в случае низкомолекулярных твердых тел.

Важнейшей особенностью течения расплава полиэтилена является накопление больших обратимых деформаций. Поэтому для описания реологических свойств полиэтилена требуется определение как вязкости расплава, характеризующей диссипацию энергии в зависимости от интенсивности деформирования, так и эластичности, характеризующей накопленную энергию и проявляющейся в нормальных напряжениях.

• формациям. Высокоэластическое — сверхупругое — состояние является специфически полимерным. В термодинамическом плане эта специфичность проявляется в том, что природа больших обратимых деформаций полимеров энтро-

большими обратимыми деформациями, обусловленными высокоэластической составляющей ЕВЭ.

Высокоэластическое состояние полимеров - аморфное состояние полимеров (см.), характеризующееся большими обратимыми деформациями, обусловленными сегментальной подвижностью макромолекул. Движение макромолекул как отдельных кинетических единиц в высокоэластическом состоянии ограничено.

Экспериментальное изучение процессов деформации вязких и вязкоупругих (т. е. обладающих и обратимыми деформациями; см. [49]) систем как в установившемся, так и в переходных режимах производят либо при постоянной скорости деформации, либо при постоянном напряжении сдвига. Для математического описания наблюдаемых кривых течения используются самые различные выражения. Так, в инженерной практике получила, широко? распространение формула Оствальда — де-Вила (V. 12). Область малых напряжений сдвига удовлетворительно описывается, например, формулой Айзеншитца *

По современным представлениям, высокомолекулярные соединения построены из длинных гибких нитевидных молекул, способных изменять свою форму. Связь между макромолекулами осуществляется физическими силами межмолекулярного взаимодействия. Как показали структурные исследования, все полимеры неоднородны по физической структуре, что обусловлено большим размером и гибкостью макромолекул. Кристаллизующиеся полимеры двухфазны и имеют кристаллические и аморфные области. Аморфные полимеры однофазны, но и в этих полимерах, согласно представлениям В. А. Каргина, имеются области упорядоченности, названные им пачками. Благодаря гибкости макромолекул и их способности менять свою форму полимеры обладают высокими обратимыми деформациями, что отличает их от низкомолекулярных соединений.

характерны малые деформации при небольших значениях напря-Ж44ния *, второй (//) — эысокоэластнческому состоянию, с большими обратимыми деформациями. На эти деформации накладывается деформация течения, которая с повышением температуры увеличивается. При достаточно высоких температурах относительные перемещения пепси как единого иелого настолько облегчаются, что наступает так называемое истинное течение полимера^ Поли1 мер переходит из и bjco ко эластического состояния в вязкотекучее^

высокоэластическое (характеризуемое огромными обратимыми деформациями, обусловленными разворачиванием цепей без проскальзывания);

Каучукам свойственны высокоэластические деформации, характеризующиеся зависимостью напряжения в материале не только от величины, но и от скорости деформации, следовательно, в них сочетаются свойства вязких и упругих тел. Наряду с обратимыми деформациями в каучуках развиваются необратимые остаточные деформации, связанные с перемещением отдельных макромолекул и их агрегатов относительно друг друга, которые являются преобладающими. Резиновые смеси характеризуются повышенной вязкостью и меньшей обратимой высокоэластической деформацией.

характерны малые деформации при небольших значениях напряжения *, второй (//) — аысокоэластнческому состоянию, с большими обратимыми деформациями. На эти деформации накладывается деформация течения, которая с повышением температуры увеличивается. При достаточно высоких температурах относительные перемещения цепей как единого целого настолько облегчаются, что наступает так называемое истинное течение полимера^ Поли1 мер переходит из к ьтсо ко эластического состояния в вязкотекучее. „ , Этот переход сопровождается резкий увеличением деформации (участок ///). Температура перехода из высокоэла-

В зависимости от агрегатного состояния раствор полимера может распадаться либо на две жидкие фазы, либо на одну низкомолекулярную жидкую и вторую полимерную твердую фазы. О типе образующихся фаз при формовании вискозных волокон нет единой точки зрения. По мнению Папкова [81, с. 157], имеет место первый случай, т. е. распад на две жидкие фазы. Гель представляет дисперсию низковязкой, низкомолекулярной фазы в среде высоковязкой полимерной фазы, причем полимерная фаза образует пространственный остов, или каркас, который обеспечивает упругие свойства геля. Вследствие высокой вязкости полимерной фазы отделение низкомолекулярной фазы происходит медленно, и гель является неравновесной двухфазной системой. Изложенную гипотезу строения гелей, по мнению ее автора, нельзя считать окончательно доказанной. Эта гипотеза иногда не согласуется с некоторыми экспериментальными фактами, в частности с возникновением упорядоченных сферолитоподобных структур при образовании геля, резким переходом от раствора полимера к гелю в виде граничной линии, высокими обратимыми деформациями геля.

характерны малые деформации при небольших значениях напря. жения *, второй (//) — аысокоэластнческому состоянию, с большими обратимыми деформациями. На эти деформации наклады вается деформация течения, которая с повышением температурь увеличивается. При достаточно высоких температурах относитель ные перемещения цепей как единого целого настолько облегчаются что наступает так называемое истинное течение полимераг Поли мер переходит из высокоэластического состояния в вязкотекучее „ , Этот переход сопровождается резкш, увеличением деформации (участок ///) Температура перехода из высокоэ.па

Высокоэластическая деформация—особый вид упругой деформации, присущий только полимерам. Она характеризуется малым модулем упругости (1—10 кгс/см?) и большими механическими обратимыми деформациями. У пространственно-структурированных полимеров (резин), получаемых при поперечном сшивании линейных макромолекул, высокоэластические свойства проявляются в наиболее чистом виде, так как узлы сетки препятствуют течению материала. Поэтому резина восстанавливает свою форму после разгрузки, как упругие твердые тела.




Образования устойчивого Отсутствие изотопного Образованием шестичленного Образованием активного Образованием ароматического Объяснения образования Образованием циклических Образованием диметилового Образованием глицерина

-
Яндекс.Метрика