Главная --> Справочник терминов


Получение поливинилового Одной из главных задач синтеза высокомолекулярных соединений является получение полимеров с заданной молекулярной массой. Так как степень поликонденсации зависит от продолжительности реакции, то обрывая реакцию на определенной стадии, можно регулировать молекулярную массу полимера. Однако этот путь не выгоден, так как при этом снижается конверсия. Кроме того, при эквимолекулярном соотношении компонентов образуется нестабильный полимер, так как функциональные группы различной природы могут реагировать друг с другом, что приводит к повышению молекулярной массы полимера.

Синтез термоэластопластов осуществляется с помощью катализаторов, образующих так называемые живые цепи, сохраняющие способность к росту в течение неограниченного времени [4]. В качестве катализаторов такого типа промышленное признание получили литийорганические соединения. Они позволяют получать полимеры с более регулярной микроструктурой эластомерного блока, чем при использовании органических соединений других щелочных металлов, и тем самым обеспечить термоэластопластам лучший комплекс свойств. Литийорганические инициаторы, используемые для синтеза термоэластопластов, должны обладать высокой скоростью инициирования, обеспечивающей получение полимеров с узким молекулярно-массовым распределением. С этой целью обычно применяется его/7-бутиллитий [5].

В практическом аспекте может представить интерес полимеризация 1,5-циклооктадиена или 1,5,9-циклододекатриена, приводящая к образованию полибутадиенов, не содержащих 1,2-звеньев [10]. Однако для реализации этого процесса необходимы катализаторы, обеспечивающие получение полимеров с содержанием цис-звеньев выше 90% и практически количественную конверсию мономера (высококипящие мономеры Cs и Ci2 трудно отделить от полимера методом водной дегазации).

Реакция роста цепи протекает по обычному механизму, как это было показано ранее. Ион-карбониевый механизм довольно легко объясняет основные закономерности реакции: высокую скорость полимеризации при низких температурах, низкую энергию активации, получение полимеров с высокой молекулярной массой. Однако имеются экспериментальные данные, которые, по-видимому, трудно объяснить, исходя из этого механизма полимеризации изобутилена.

Основным применением вышеописанных катализаторов является синтез живых бифункциональных полимеров с заданной молекулярной массой и узким ММР. При этом катализатор должен быть растворим в растворе мономера, что легко достигается при применении полярных растворителей. Однако в этом случае затрудняется получение полимеров с высоким содержанием 1,4-звеньев [в\.

Полимеризация диенов отличается от полимеризации алке-нов тем, что в зависимости от условий у диенов может осуществляться как 1,2-, так и 1,4-присоединение. Кроме того, так как в полимере сохраняются кратные связи, возможно получение полимеров как цис-, так и транс-строения.

1. Получение полимеров, которые не могут быть синтезированы непосредственно из мономеров из-за того, что соответствующие мономеры либо неизвестны, либо не способны вступать в реакцию полимеризации. Например, поливиниловый спирт получают гидролизом поливинилацетата:

2. Получение полимеров с новыми свойствами за счет химических превращений функциональных групп макромолекул (химическая модификация полимеров). Классическим примером такого рода превращений является получение разнообразных производных целлюлозы (ацетата целлюлозы, нитрата целлюлозы и др.).

Таким образом ионная полимеризация обеспечивает получение полимеров с более регулярной и стабильной структурой, а следовательно, и с лучшим комплексом свойств, но технологическое оформление процессов ионной полимеризации по сравнению со сво-боднорадикалыюй значительно сложнее. Поэтому большую часть промышленных многотоннажных полимеров до настоящего времени получают способами свободнорадикальной полимеризации.

Полимераналогичные превращения. Получение полимеров путем полимераналогичных превращений основано на химических реакциях функциональных групп в макромолекулах полимеров. Функциональные группы в полимерных соединениях обладают такой же реакционной способностью, как и соответствующие функциональные группы в низкомолекулярных соединениях.

Получение полимеров определенной структуры является одной из главных задач современной химии и физики полимеров. Структурой полимера определяются наиболее выгодные эксплуатационные свойства изделий. Поэтому в процессах формования (калан-дрование, экструзия прессование, литье и др.) помимо формы, материалу должна придаваться к определенная структура.

Технологический процесс производства ПВС (для поливинилацеталей) по совмещенной схеме (периодический метод) состоит из двух основных стадий: получение поливинилацетата (подготовка сырья, полимеризация винилацетата, приготовление раствора поливинилацетата) и получение поливинилового спирта (приготовление метанольного раствора щелочи, омыление поливинилацетата, отжим, сушка и просеивание ПВС).

раздельное получение поливинилового спирта и его ацеталирование (двухванные методы).

Работа 32. Получение поливинилового спирта 91

Работа 32. Получение поливинилового спирта

Цель работы. Получение поливинилового спирта щелочным или кислотным гидролизом поливинилацетата, определение состава полученного полимера, сравнение растворимости исходного и конечного продуктов реакции. Реактивы

В зависимости от механизма реакций при полимераналогич-ных превращениях могут образовываться новые функциональные боковые группы, происходить циклизация, раскрытие циклов, различные более сложные превращения, К полимеранало-гичным превращениям с образованием новых функциональных групп относится, в частности, получение поливинилового спирта алкоголизом поливинилацетата в щелочной среде практически •без изменения степени полимеризации. Присутствие воды в реакционной среде тормозит реакцию алкотолиза, усложняет промывку и стабилизацию поливинилового спирта. Поэтому рекомендуется проводить процесс в среде абсолютно сухогс спирта в присутствии 0,2—0,4% раствора едкого натра в качестве катализатора Процесс алкоголнза сопровождается гидролизом, поскольку на реакцию расходуется лишь 10% едкогс

РАБОТА 98: ПОЛУЧЕНИЕ ПОЛИВИНИЛОВОГО СПИРТА

РАБОТА 99. ПОЛУЧЕНИЕ ПОЛИВИНИЛОВОГО СПИРТА

РАБОТА 100. ПОЛУЧЕНИЕ ПОЛИВИНИЛОВОГО СПИРТА

РАБОТА 1 01 . ПОЛУЧЕНИЕ ПОЛИВИНИЛОВОГО СПИРТА

Работа 98. Получение поливинилового спирта омылением по-




Получении соединения Получения лакокрасочных Получению различных Полученный бесцветный Полученный дистиллат Полученный катализатор Полученный неочищенный Полученный восстановлением Полученные конденсацией

-
Яндекс.Метрика