![]() |
|
Главная --> Справочник терминов Поведение полимерных Исследовано поведение отдельных цепей и их совокупностей на микро- и макроуровнях при кратковременном и длительном нагружении полимера. Рассмотрены физико-химические процессы в полимерах в механическом поле. Показана эффективность применения современных инструментальных методов для анализа поведения полимеров под нагрузкой. ватной молекулярной теорией поведения полимерных цепей. К сожалению, несмотря на большое число работ, проводимых в этой области [48], предсказания существующих теорий носят весьма ограниченный характер. Молекулярные теории слабоконцентрированных растворов полимеров разработаны в значительно большей степени и лучше описывают поведение отдельных молекулярных цепей в поле механических напряжений. В основе всех этих теорий лежит детальный анализ сил, действующих на отдельную молекулярную цепь. К таким силам относятся: силы гидродинамического сопротивления, которые стремятся сориентировать цепи в направлении движения; силы, возникающие вследствие броуновского движения, стремящиеся разориентировать (свернуть) цепи; и силы межмолекулярного взаимодействия. не изменяется [114} Поведение отдельных групп зависит от их положения по отношению к нитрогруппе Так, ке-тонная группа 6-метокси-2-иитроацетофеиоиа не поддается восстановлению ЦП5], в других же нитросоедине-ииях карбонильная группа восстанавливается одновременно с нитрогруппами, например [116] Полисахариды древесины при ее делигнификации в кислой среде подвергаются гидролитической деструкции. Поведение отдельных представителей углеводной части древесины в условиях кислотно-катализируемого гидролиза детально рассмотрено ранее (см. 11.5). Специфика варочного процесса будет сказываться на глубине этих превращений и развитии побочных процессов, обусловленных взаимодействием углеводов с компонентами варочного раствора. Эту специфику можно рассмотреть на примере сульфитной варки, осуществляемой водными растворами диоксида серы и оснований, т.е. растворами сернистой кислоты и ее солей. Сульфитную варку проводят при различных значениях рН (см. 13.1). При увеличении рН уменьшается концентрация ионов гидроксония, а гидрати-рованный диоксид серы превращается в ионы гидросульфита, которые при дальнейшем увеличении рН образуют сульфит-ионы. Выше мы рассматривали структуру аморфных полимеров относительно того, какие коиформации принимают в них макромолекулы, какие упорядоченные образования могут в них возникнуть, какие для этого необходимы условия, какими методами можно наблюдать поведение отдельных макромолекул в расплаве или растворе. Основной вывод, к которому пришли исследователи, заключается в том, что аморфный полимер представляет собой совокупность сильно перепутанных полимерных клубков, причем в гомополимерах упорядоченность существует только на масштабах сегмента макромолекулы. Наглядную картину того, что представляет собой расплав гибко-цепного полимера, дают сваренные спагетти (сырые спагетти являются моделью жесткоцепного полимера, их можно проще-всего уложить только параллельно). Некоторые закономерности, характеризующие связь между строением вещества и его способностью к адсорбции, уже упоминались выше (стр. 225). Однако нередко, особенно при хромато-графировании смеси веществ сложного строения, условия опыта приходится подбирать в значительной мере чисто эмпирическим путем. Желательно, если имеется возможность, предварительно исследовать поведение отдельных компонентов смеси в условиях будущего хроматографирования; по степени адсорбции и скорости движения зоны при проявлении можно судить о взаимном расположении зон на столбике адсорбента при хроматографировании смеси веществ в данных условиях. Херст и Капсис [44] изучили расщепление различных пуринов под действием горячей щелочи. Оказалось, что аденин, гуанин, гипоксантин и ксан-тин устойчивы к нагреванию с 1н. раствором едкого натра до 100°. Аденозин в этих условиях распадается с образованием аденина, инозина и 4,5,6-три-аминопиримидина [45]. Альберт и Браун [46] установили, что в отличие от пурина 9-метилпурин расщепляется при обработке горячим раствором 1н. щелочи. При действии щелочи в мягких условиях происходит раскрытие имидазольного цикла в 9-(р-о-рибофуранозил)пурине [47]. Изучено поведение отдельных пуринов в 10 н. растворе едкого натра [46]. Оказалось, что пури-новые соединения более устойчивы к щелочам, чем птеридиновые производные [46]. В какой-то степени это можно, по-видимому, объяснить способностью пуринов образовывать анионы в растворах сильных щелочей, что приводит к стабилизации электронодефицитного пиримидинового цикла. Херст и Капсис [44] изучили расщепление различных пуринов под действием горячей щелочи. Оказалось, что аденин, гуанин, гипоксантин и ксан-тин устойчивы к нагреванию с 1н. раствором едкого натра до 100°. Аденозин в этих условиях распадается с образованием аденина, инозина и 4,5,6-три-аминопиримидина [45]. Альберт и Браун [46] установили, что в отличие от пурина 9-метилпурин расщепляется при обработке горячим раствором 1н. щелочи. При действии щелочи в мягких условиях происходит раскрытие имидазольного цикла в 9-(р-о-рибофуранозил)пурине [47]. Изучено поведение отдельных пуринов в 10 н. растворе едкого натра [46]. Оказалось, что пури-новые соединения более устойчивы к щелочам, чем птеридиновые производные [46]. В какой-то степени это можно, по-видимому, объяснить способностью пуринов образовывать анионы в растворах сильных щелочей, что приводит к стабилизации электронодефицитного пиримидинового цикла. Некоторые закономерности, характеризующие связь между строением вещества и его способностью к адсорбции, уже упоминались выше (стр. 287). Однако нередко, особенно при хрома-тографировании смеси веществ сложного строения, условия опыта приходится подбирать в значительной мере чисто эмпирическим путем. Желательно, если имеется возможность, предварительно исследовать поведение отдельных компонентов смеси в условиях будущего хроматографирования; по степени адсорбции и скорости движения зоны при проявлении можно судить о взаимном расположении зон на столбике адсорбента при хроматографи-ровании смеси веществ в данных условиях. Рентгенографическое исследование деформированных волокон и пленок, проведенное в последнее время, показало, что при релаксации волокнистая структура на рентгенограммах исчезает на кольцах, отвечающих внутримолекулярным интерференциям, и остается лишь на кольцах, отвечающих рассеянию между элементарными члениками цепи. Различное поведение отдельных члеников цепи и самих цепей в целом является прямым доказательством деформируемости цепи и дает возможность уяснить себе физическую картину релаксационного процесса. При быстрой деформации происходит ориентация как цепей, так и отдельных звеньев цепи; при релаксации происходит выравнивание, распределение напряжений в цепи, что сопровождается дезориентацией звеньев цепи, но с сохранением среднего положения цепи. Наблюдения за влиянием геометрии складывания на деформационное поведение отдельных доменов позволили сформулировать некоторые общие правила: Как отмечалось выше, поведение полимерных молекул .^находящихся во всех аморфных состояниях: стеклообразном, высокоэластическом, в расплаве и в растворе, — можно описывать, считая, что "в равновесном состоянии они имеют конформацию статистического клубка. В стеклообразном состоянии подвижность полимерной цепи отсутствует, во всех остальных состояниях она имеется. Исключение составляют лишь жесткоцепные системы. Таким образом, По форме математическое выражение, описывающее зависимость коэффициента трения от нормальной нагрузки (4.3-6), подобно так называемому степенному закону течения, описывающему неньютоновское поведение полимерных расплавов [см. уравнение (6.5-2)]. Выражение (4.3-6) показывает, что, за исключением случая а= 1, коэффициент трения с ростом нормальной нагрузки FN уменьшается. Этот вывод подтверждается экспериментальными данными (рис. 4.3) [11, 12]. Подавляющее большинство операций формования и элементарных стадий процессов переработки полимеров включает либо изотермическое, либо (чаще) неизотермическое течение расплавов полимеров в каналах сложной геометрии. Поэтому перед тем как рассматривать реальный технологический процесс, целесообразно отдельно изучить реологическое поведение полимерных расплавов в простых условиях течения и в отсутствие градиентов температуры. В этой главе поставлена задача пояснить физический смысл таких понятий, как «неньютоновское поведение», «вязкоупругость», «начальный коэффициент нормальных напряжений» и «функция вязкости». Здесь же будут рассмотрены определяющие уравнения, количественно Реологические свойства характеризуют поведение полимерных систем при деформировании. Они определяют зависимость между напряжениями, деформациями и скоростями деформаций. Эти зависимости, измеренные при различных температурах для полимеров разного молекулярного веса и полимерных систем разного состава, дают важную информацию об их структуре и структурных превращениях. Поведение полимерных смесей при горении Благодаря этой аналогии, оказалось возможным применить для описания поведения полимерных клубков аппарат теории магнетиков, а поскольку к этому времени уже было выяснено, что поведение всех систем вблизи точки фазового перехода второго рода (критической точки) подчиняется гипотезе подобия (скейлинга), то, соответственно, и поведение полимерных клубков достаточно большой молекулярной массы стало естественным анализировать, используя скейлинговый подход. 140. Гольдберг М. И. Механическое поведение полимерных материалов. М.: Химия. 1970. 156 с. Недостаток степенного уравнения, состоящий в том, что единицы измерения т и у фиксированы, и для материалов с различными п изменяется не только значение \ilt но и единица ее измерения, не является препятствием к применению указанной зависимости. Это еще раз подтверждает, что степенное уравнение не есть единый физический закон, а представляет собой эмпирическую зависимое!ь. Основной недостаток степенного уравнения заключается в том, что при экстраполяции к нулевым или бесконечно большим скоростям сдвига оно не может использоваться, так как предсказывает, соответственно, бесконечную или нулевую вязкость материала. В целом ряде случаев (пленочное течение, свободная конвекция, медленное движение тел в жидкостях) этот недостаток может привести к серьезным погрешностям. Однако в интервале значений напряжений и скоростей сдвига, представляющих наибольший интерес при переработке полимеров, степенной закон описывает поведение полимерных систем с достаточной точностью и хорошо согласуется с опытными данными при изменении скорости сдвига резиновых смесей на три-четыре порядка. На рис. 1.2 и 1.3 представлены экспериментальные данные по исследованию процесса течения каучуков и резиновых смесей. Следует отметить, что для чистых каучуков в декартовой системе координат с логарифмическим масштабом зависимость напряжения сдвига от скорости сдвига не является линейной (рис. 1.З.). В литературе приводятся численные значения констант степенного уравнения (1.2) для многих каучуков и резиновых смесей. В зависимости от состава смеси и температуры исследования значения \1г меняются в диапазоне от 0,01 до 0,3 МП а с", а константы п — в диапазоне от 0,15 до 0,8. Для инженерных расчетов в качестве первого приближения можно принять, что индекс течения п не зависит от температуры, если интервал ее изменения не превышает 30 °С. При скорости сдвига 100 с"1 индекс течения п с изменением температуры от 38 до 93 °С меняется для бутадиен-стирольного каучука GR-S Реологические свойства характеризуют поведение полимерных систем при деформировании. Они определяют зависимость между напряжениями, деформациями и скоростями деформаций. Эти зависимости, измеренные при различных температурах для полимеров разного молекулярного веса и полимерных систем разного состава, дают важную информацию об их структуре и структурных превращениях. Реологические свойства характеризуют поведение полимерных систем при деформировании. Они определяют зависимость между напряжениями, деформациями и скоростями деформаций. Эти зависимости, измеренные при различных температурах для полимеров разного молекулярного веса и полимерных систем разного состава, дают важную информацию об их структуре и структурных превращениях. В этом разделе приводятся реологические уравнения [164], характеризующие упругое и вязкоупругое поведение полимерных материалов. ![]() Повышенной растворимостью Получения растворов Повышенной теплостойкостью Повышенной влажностью Повышенное количество Повышенном содержании Повышенную плотность Повышенную температуру Переносят содержимое |
- |