Главная --> Справочник терминов


Поведение расплавов Механические свойства полимеров - комплекс свойств, определяющих поведение полимеров при действии на них внешних сил (см. Реология полимеров).

Поведение полимеров в растворах . • . 60

ПОВЕДЕНИЕ ПОЛИМЕРОВ В РАСТВОРАХ

Поведение полимеров ч растворах

Поведение полимеров а растворах 63

Поведение полимеров в растворах

Поведение полимеров в растворах

Поведение полимеров в растворив

Для полимеров в вязкотекучем состоянии закон Ньютона (6.1) неприменим, за исключением очень малых напряжений сдвига. Поэтому вязкое поведение полимеров на практике часто описывают эмпирическими формулами. Кривую течения вязких систем можно приближенно описать одной из них — формулой Ост вал ь-да-де-Вила

На рис. 9.16 следует отметить одинаковую форму кривых зависимости е—Т при разных со или кривых е—со при разных Т. Кривые е—Т и е—со совершенно симметричны, что приводит к выводу об аналогии влияния температуры и частоты на механическое поведение полимеров. Это вполне естественно, поскольку, как мы видели выше, механические свойства полимера, характер его реакции на внешнее воздействие определяются критерием D=i[t. Значение критерия может изменяться как с изменением времени (частоты),так и с измеиени-ем времени релаксации (темпера-туры).

Реологическое поведение полимеров определяется не только-температурой, но и природой полимера, его молекулярной массой и молекулярно-массовым распределением, а также напряжением: и скоростью сдвига, при которых осуществляется течение раствора или расплава. Поэтому нельзя характеризовать реологические свойства полимера по одной величине, скажем, по вязкости. Охарактеризовать реологическое поведение полимера можно, лишь установив зависимость вязкости от напряжения или от скорости сдвига либо зависимость напряжения сдвига от скорости сдвига и получив при этом кривые течения.

6.2. Неньютоновское поведение расплавов полимеров. 135

6.2. Неньютоновское поведение расплавов полимеров

Ниже приведены примеры, иллюстрирующие особенности течения типичных расплавов полимеров, которые резко отличают их от ньютоновских жидкостей. Оба класса жидкостей считаются несжимаемыми (см. гл. 5). Чтобы продемонстрировать неньютоновское поведение расплавов полимеров, примеры подобраны так, что и х описание невозможно в рамках ньютоновского определяющего уравнения:

Наконец, поведение расплавов и растворов полимеров отличается от поведения ньютоновских жидкостей при неустановившемся течении в экспериментах, где реализуется простой сдвиг. Как видно из рис. 6.4, зависимость напряжения от времени при течении расплава полистирола в вискозиметре типа «конус—плоскость» имеет максимум, а не увеличивается монотонно, приближаясь асимптотически к постоянному значению, как это наблюдается для ньютоновских жидкостей или расплавов полимеров при очень низких скоростях деформации (число Деборы De -> 0).

Из сказанного выше ясно, насколько сложно реологическое поведение расплавов и растворов полимеров. Поэтому не удивительно, что тридцатилетние усилия реологов не привели еще к созданию определяющих уравнений, количественно описывающих все явления, возникающие при течении полимерных расплавов. Ученые и инженеры используют уравнения, описывающие те особенности течения полимеров, которые представляют для них наибольший интерес или важны для частной рассматриваемой задачи. Для описания реологического поведения расплавов полимеров было предложено множество определяющих уравнений, но только небольшая их часть была использована для решения задач, связанных с процессами переработки полимеров. Тем не менее интересно проследить историю их происхождения и выявить существующую между ними взаимосвязь.

Расплавы полимеров ведут себя как ньютоновские жидкости только при очень малых скоростях сдвига. Более того, как указывалось в разд. 6.3, уравнения ЛВУ ограничиваются очень малыми деформациями. При более высоких скоростях деформаций и при больших деформациях применяются нелинейные определяющие уравнения вязкоупругости типа рассмотренных в разд. 6.3 уравнений ЗФД, Уайта—Метцнера, ГМ, БКЗ, Лоджа или Богью. Только с помощью более сложных уравнений удается полуколичественно описать реологическое поведение расплавов полимеров, остальные согласуются с экспериментом лишь качественно. Тем не менее теория линейной вязкоупругости полезна по следующим соображениям: 1) она дает возможность понять, почему полимеры проявляют вязко-упругое поведение, а также качественно показывает тенденции зависимости их механических свойств от времени; 2) она объясняет наблюдаемую экспериментально температурно-временную эквива-

Очевидно, что при скорости деформации растяжения, меньшей критического значения (ё0 = 1/2Хгаах), поведение расплавов полимера при одно- и двухосном растяжении можно рассматривать как течение неньютоновской жидкости, при более высокой скорости деформации расплав деформируется как нелинейное высокоэластическое твердое тело.

Образование вихрей типично далеко не для всех полимеров. Так, например, они не образуются при течении ПЭВП и изотактического полипропилена и при очень низких скоростях сдвига, при которых расплавы и растворы полимеров ведут себя аналогично ньютоновским жидкостям. При увеличении скорости течения образуются вихри. Очевидно, что поведение расплавов при радиальном течении не согласуется с реологическим уравнением состояния и уравнением движения, описывающими вискозиметричеекие теченчя этих жидкостей. Увеличение скорости течения приводит к увеличению размера вихрей (34]. Большие входовые потери давления являются следствием вихрей, которые как бы увеличивают длину капилляра. При больших вихрях величина угла входа а мала (см. рис. 13.16) **. В свою очередь, малый угол входа обусловливает малую степень растяжения ядра потока в области «рюмки». Это, по-видимому, натолкнуло Ламба и Когсвелла [35] на мысль о следующей связи угла входа а с продольной вязкостью fj: расплав с высокой продольной вязкостью способен к малым степеням удлинения, что и приводит к возникновению малых углов входа. Ламб и Когсвелл предложили соотношение

Итак, теоретические исследования показывают, что общая картина течения и профиль фронта потока слабо зависят от вязкостных свойств расплава: ньютоновские и псевдопластичные жидкости обнаруживают почти одинаковый характер развития фронта потока (Пример 14.1 объясняет такое поведение расплавов). Этот вывод подтвержден экспериментально при помощи высокоскоростной фотосъемки процесса литья под давлением низковязких ньютоновских жидкостей в прозрачную форму [6]. Полученный результат имеет важное значение как в теоретическом, так и в экспериментальном отношении. С точки зрения моделирования процесса литья под давлением допустимо (в первом приближении) использование ньютоновского уравнения состояния для расчета положения и профиля фронта потока. С точки зрения экспериментапьного исследования процесс литья под давлением можно изучать на простой и удобной системе: низковязкая жидкость в прозрачной форме. Естественно, время заполнения формы и давление существенно зависят от вязкостных свойств расплава.

Влиянию смазок на реологическое поведение расплавов ПВХ посвящено много работ [90, 109, 121, 150, 158], в которых рассмотрен механизм действий смазок и предложено условное деление их на внутренние и внешние. Внутренние смазки хорошо совмещаются с ПВХ и снижают эффективную вязкость расплава, внешние - способствуют уменьшению адгезии полимера к поверхности металла перерабатывающих машин. Кроме того, предпринимались попытки классификации смазок по полярности их действия на физико-механические свойства материалов и синергическому действию. Однако до настоящего времени нет единого мнения о принципе действия смазок. Так, если в [90, 109, 121, 158] утверждается, что по характеру действия смазки можно разделить на три типа - внешние, внутренние и смешанные, то в [137] на основании вискозиметрических исследований показано, что ни одна из смазок не обладает ярко выраженным индивидуальным эффектом и в зависимости от содержания механизм их действия может изменяться. Так, изучение пластикации, смесей на основе ПВХ на пластографе Брабендера в присутствии различных смазок при температурах от 80 до 100 "С дало основание авторам [137] утверждать, что эффект смазки проявляется при" температуре, превышающей температуру плавления смазки на 50 "С.

Большой интерес представляет работа [179], в которой изучали реологическое поведение расплавов жестких ПВХ композиций со смазками, низкомолекулярным ПВХ (Мл = 5900), диоктилфталатом и акриловым модификатором. Показано, что до температуры расплава, равной 200 "С и названной авторами критической температурой, наибольший эффект снижения вязкости расплава достигается в присутствии 10 мае. ч. диоктилфталата. При температуре выше 200 °С влияние смазок и других компонентов на изменение вязкости расплава выражено менее отчетливо [34]. Другим важным выводом этого исследования является доказательство того, что введение в ПВХ только низкомолекулярной добавки недостаточно эффективно для снижения вязкости расплава.

В монографии обобщены теоретические и экспериментальные исследования в области реологии полимеров и их растворов. Наиболее подробно изложены результаты исследований вязкостных свойств, определяющих поведение расплавов и растворов полимеров в различных технологических процессах. Детально изложены существующие представления о вязкоупру-гих и высокоэластических свойствах полимеров.




Повышенной скоростью Повышенной стойкостью Повышенной термической Повышенной водостойкостью Повышенное сопротивление Повышенную эластичность Повышенную реакционную Повышенную устойчивость Получения резиновых

-