Главная --> Справочник терминов


Поверхности склеиваемых Интересно остановиться на некоторых, сугубо методических вопросах проведения этой реакции. Первоначально циклизацию проводили нагреванием субстрата при довольно высокой температуре (как правило, выше ЮО'С), из-за чего этот метод оставался малопригодным для термически лабильных полифункциональных соединений. В ходе дальнейших исследований было найдено, что циклоприсоединение резко ускоряется при действии мягких окислителей, например, N-метшшорфолиноксида [34g], или при проведении реакции на поверхности силикагеля [34h]. Благодаря этим разработкам стало возможным проводить реакцию в существенно более мягких

Интересно остановиться на некоторых, сугубо методических вопросах проведения этой реакции. Первоначально циклизацию проводили нагреванием субстрата при довольно высокой температуре (как правило, выше 100"С), из-за чего этот метод оставался малопригодным для термически лабильных полифункциональных соединений. В ходе дальнейших исследований было найдено, что циклоприсоединение резко ускоряется при действии мягких окислителей, например, N-метилморфолиноксида [34g], или при проведении реакции на поверхности силикагеля [34h]. Благодаря этим разработкам стало возможным проводить реакцию в существенно более мягких

состояние поверхности силикагеля, обусловливающее его высокую

нениям поверхности силикагеля, что снижает его адсорбцион-

Интересно остановиться на некоторых, сугубо методических вопросах проведения этой реакции. Первоначально циклизацию проводили нагреванием субстрата при довольно высокой температуре (как правило, выше 100°С), из-за чего этот метод оставался малопригодным для термически лабильных полифункциональных соединений. В ходе дальнейших исследований было найдено, что циклоприсоединение резко ускоряется при действии мягких окислителей, например, N-метилморфолиноксида [34g], или при проведении реакции на поверхности силикагеля [34h]. Благодаря этим разработкам стало возможным проводить реакцию в существенно более мягких

С каждым годом он находит все более широкое применение в самых разнообразных отраслях народного хозяйства. Ввиду гидрофильных свойств поверхности силикагеля его часто используют для осушки воздуха [1—4], углекислого газа, водорода, кислорода, азота, хлора и других промышленных газов [4, 5].

Геометрическая структура силикагеля не является единственным фактором, определяющим его адсорбционную активность. При этом важную роль играет химическая природа его поверхности. Последнюю можно варьировать термической дегидратацией, проведением на поверхности силикагеля самых различных реакций, дающих новые соединения. К таким реакциям относятся алкокси-лирование, хлорирование, взаимодействие поверхности силикагеля с алкил- и арилхлорсиланами и т. д.

Поверхность этих частиц [74] покрыта гидроксильны-ми группами, сохранившимися при конденсации орто-кремневой кислоты. Наличие на поверхности силикагеля гидроксилов, связанных с атомами кремния, было позже обосновано Карманом [69], который приходит к строению коллоидной кремнекислоты исходя из реальных структур кремнезема, состоящих из сетки тетраэдров Si04 и соответствующих по составу Si02. Сохранение структурных единиц Si02 в этом случае предполагает наличие на пограничной поверхности коллоидной кремнекислоты незавершенных тетраэдров. Стремление поверхностных атомов кремния к завершению тетраэдрической координации с кислородом обусловливает при контакте с влагой гидратацию поверхности кремнезема с образованием ОН-группы. Как указывается в [75—77], упаковка кремнекислород-ных тетраэдров внутри частиц золя и геля кремнекислоты отличается от их упаковки в кристалле и близка к тако-

Шапиро и Кольтгофф [94] пришли к аналогичному выводу на основе изучения термического старения ксерогелей, а Элкин, Шулл и Росс [95] — исследуя свежеприготовленный силикагель с помощью метода рассеяния рентгеновских лучей под малыми углами. Последние из указанных авторов определили, что размеры первичных частиц этого геля составляют 30—60 А. Частицы такого же-диаметра были найдены Планком и Дрейком [46] из величины удельной поверхности силикагеля.

действие кислоты, обусловливающее усиление связи частиц с дисперсионной средой, проявляется в увеличении удельной поверхности силикагеля; возрастание объема и радиуса пор, по мнению автора, связано с преобладанием дегидратирующего действия.

Это хорошо видно из изотерм адсорбции паров метилового спирта на этих образцах (рис. 11). Увеличение удельной поверхности силикагеля после пропитки геля кислотой авторы [122] объясняют вторичной коагуляцией кремневой кислоты. Последняя, по их мнению, образуется в межми-целлярном пространстве при пептизации геля аммиачной промывной водой.

Состояние поверхности склеиваемых материалов также оказывает существенное влияние на процесс склеивания и качество клеевых соединений.

В морских условиях на поверхности склеиваемых участков свай образуются также продукты коррозии и откладываются микроорганизмы. Все указанные вещества, скапливающиеся на поверхности свай, нарушают сплошность покрытия и понижают его эффективность.

Полярные адгезионно активные функциональные группы клея улучшают совместимость поверхности склеиваемых материалов и клеевого слоя. Водородные связи — причина большой силы сцепления воды (высокое поверхностное натяжение); они определяют способность воды прилипать (смачивать) к различным веществам. Смачивание связано с образованием водородных связей между молекулами воды и атомами кислорода твердого тела. Поэтому у неорганических клеев в качестве затворителей или растворителей наиболее распространены вода и водные растворы, хотя, в принципе, можно использовать и неводные растворители.

Полярные адгезионно активные функциональные группы клея улучшают совместимость поверхности склеиваемых материалов и клеевого слоя. Водородные связи — причина большой силы сцепления воды (высокое поверхностное натяжение); они определяют способность воды прилипать (смачивать) к различным веществам. Смачивание связано с образованием водородных связей между молекулами воды и атомами кислорода твердого тела. Поэтому у неорганических клеев в качестве затворителей или растворителей наиболее распространены вода и водные растворы, хотя, в принципе, можно использовать и неводные растворители.

Подготовка поверхности склеиваемых материале? 58 Нанесение клеев 60

При контакте клеящего вещества (адгезива) и склеиваемого материала (субстрата) между ними возникают различные связи— межмолёкулярные, химические, водородные (для более прочного взаимодействия контактирующие материалы должны содержать в своем составе способные к взаимодействию функциональные группы). Природа этих связей определяет прочность клеевых соединений. Кроме того, на прочность клеевого соединения влияют химическая природа и структура адгезива и субстрата, и состояние поверхности склеиваемых материалов, условия формирования клеевых соединений и ряд других факторов [2].

При длительном действии повышенной (а иногда и пониженной) температуры может изменяться характер поверхности склеиваемых материалов. У металлов, которые перед склеиванием часто подвергают механической обработке, травлению и т. д., на поверхности создается специфическая структура, характеризующаяся повышенной склонностью к адсорбции и высокой поверхностной энергией. Если температура старения такова, что структура поверхности может постепенно перестраиваться, то это приводит к снижению адгезионных характеристик в уже сформированных клеевых соединениях.

Тем не менее технология склеивания — это специальная область, требующая особых знаний, опыта и навыков. Технологический процесс склеивания конструкций состоит из следующих основных стадий: подготовки поверхности склеиваемых материалов, нанесения клеев, запрессовки склеиваемых элементов, отверждения клея и контроля качества готовых изделий.

Подготовка поверхности склеиваемых материалов определяется прежде всего их природой, назначением и условиями эксплуатации изделий, требованиями к прочности и надежности клееных конструкций. Поскольку в конструкции-применяются самые разнородные материалы, то и подготовка их поверхности к склеиванию существенно различается.

Состояние поверхности склеиваемых материалов может существенно влиять на процесс склеивания и качество клеевых соединений.

Выбор соответствующего полимера для клеевой композиции основан на необходимости обеспечить высокую адгезию его к поверхности склеиваемых материалов, В указанных выше монографиях4"6 описаны все преимущества и недостатки различных теорий склеивания, в том числе и таких, как адсорбционная, электростатическая и диффузионная. Не касаясь оценки этих теорий, отметим лишь, что при несовпадении химической природы клея и склеиваемых поверхностей значительную роль в повышении адгезионных свойств играет наличие полярных групп —ОН, —СООН, —NHCO— и др. Если поверхности инертны, то прибегают к химической модификации их, с тем чтобы усилить адгезионную связь е клеем. Для склеивания изделий из полимеров удобно использовать растворы тех же полимеров, и в этом случае, по-видимому, оправдывается гипотеза склеивания, предполагающая, что взаимная диффузия макромолекул >




Поверхность адсорбента Поверхность материала Перекисные соединения Поверхность субстрата Поверхности адсорбента Поверхности катализатора Получения сероводорода Перерабатываемых материалов Поверхности обрабатываемого

-
Яндекс.Метрика