Главная --> Справочник терминов


Получения синтетического Газовые конденсаты месторождений Советского Союза являются прекрасным сырьем для получения синтетических материалов. Поэтому их целесообразно будет использовать для производства основных видов нефтехимических полупродуктов (оле-финов, ароматических углеводородов и др.).

Наиболее разработанными сейчас оказываются два способа получения синтетических жирных кислот (СЖК) — периодическое окисление твердых парафиновых углеводородов и непрерывное окисление жидких парафиновых углеводородов, рассмотренные ниже (гл. VIII).

На заводах в качестве сырья для получения синтетических жирных кислот используются твердые парафины с температурой плавления 52—54° С. Окисление парафина осуществляется кислородом воздуха при температуре 105—120° С в присутствии катализатора [74]. В качестве катализатора применяется перманга-нат калия в количестве 0,2% от веса исходного парафина. Процесс окисления периодический. Единовременная загрузка окислительной колонны — 30 т смеси свежего и возвратного парафина.

Существенное влияние на величину себестоимости синтетических жирных кислот оказывает качество поступающего на окисление парафина и, в частности, его фракционный состав. Выше указывалось, что на всех действующих заводах в качестве сырья для получения синтетических кислот используются парафины, выки-тющие в основном в пределах 320—450° С. Этим условиям удовлетворяет парафин, вырабатываемый грозненскими и дрогобыч-скими нефтеперерабатывающими заводами, а также среднеплав-кий парафин фракции 350—420° С, полученный в качестве побочного продукта масляного производства на восточных НПЗ.

Впервые дифенилолпропан был синтезирован русским ученым А. П. Дианиным конденсацией фенола с ацетоном в присутствии кислотного катализатора1. В промышленности дифенилолпропан начала выпускать в 1923 г. германская фирма Kurt Albert; он использовался для получения синтетических лаковых смол «альберто-лей» и «дюрофенов»2. Однако значительный рост его производства относится только к 50-м годам, когда большое распространение в различных областях промышленности получили эпоксидные полимеры, сырьем для синтеза которых явились дифенилолпропан и эпихлоргидрин. С тех пор дифенилолпропан находит все более широкое применение в химической промышленности в качестве сырья, для производства ряда ценнейших химических продуктов3"1^] В ближайшие годы производство его должно значительно возрасти; это видно из следующих данных (в тыс. т в год):

14. Цурута Тэйдзи. Реакции получения синтетических полимеров. Пер. с японского под ред. А. М. Сергеева. М., Госхимиздат, 1963, 196 с.

В связи с разработкой технологии получения синтетических латексов из растворов отгонкой растворителя и мономера заслуживают внимания исследования по прививке в эмульсии; это дает возможность удалить до модификации непрореагировавший мономер и применять окислительно-восстановительные системы. Прививка метакриловой кислоты в латексе сополимера бутадиена и стирола [46] наряду с улучшением свойств каучука повышает стабильность латекса. Ясно также, что прививка кислот к полиизопрену в растворе сделает полимер поверхностно-активным и облегчит создание эмульсий и латексов.

Многие примеси, присутствие которых обусловлено специфическими особенностями получения синтетических каучуков, оказывают существенное влияние на их стабильность. К числу таких примесей в первую очередь следует отнести соединения металлов переменной валентности, наличие которых может быть обусловлено рядом причин: а) применением катализаторов на основе этих металлов; б) коррозией аппаратуры; в) недостаточной чистотой сырья, применяемого при получении и выделении каучуков.

Другим направлением утилизации ВПП является их вакуумное фракционирование с последующим квалифицированным использованием полученных фракций в соответствии с их составом и свойствами. Так, проработан вариант разделения технического продукта на пять фракций (в порядке возрастания температуры перегонки): 1—преддиольная; 2 — диольная; 3 — диоксановые спирты; 4 — пластификаторы и 5 — флотореагенты. Первая фракция может подвергаться каталитическому расщеплению (см. ниже). Вторая, в основном содержащая МВД, может быть использована для получения изоамиленовых спиртов — ценных полупродуктов для получения синтетических витаминов и душистых веществ. Путем гидрирования третьей фракции — диоксановых спиртов — легко могут быть получены соответствующие диолы, представляющие большой интерес в качестве сырья для получения полиэфирных волокон, антифризов, тормозных жидкостей и т. д. Четвертая фракция может быть использована для пластификации ПХВ. Наконец, высококипящий остаток является даже несколько более эффективным флотореагентом, чем продукт Т-66.

Бутадиен. Бутадиен является основным мономером для получения синтетических каучуков. Путем полимеризации бутадиена получают бутадиеновый каучук, который в зависимости от условий полимеризации выпускают различных марок. В последнее время большое внимание уделяется получению сополимерных видов синтетических каучуков. При полимеризации бутадиена со стиролом получается бутадиен-стирольный каучук. После добавки наполнителей и вулканизации получается каучук, по свойствам близкий к натуральному. Бутадиен используется также в качестве сырья для производства бутадиен-нитрильного каучука. Сополимер бутадиена и акрилонитрила устойчив к действию высоких температур и масла. Ценными свойствами обладает также бутилкаучук, получаемый путем совместной полимеризации бутадиена с изопреном.

Этот триол представляет собой ценный полупродукт для получения синтетических полимеров. Неполная дегидратация триола приводит к образованию третичного тетрагидропиранового спирта, а полная дегидратация — метилдигидропирана

Более старым является метод сернокислотной гидратации, заключающийся в образовании моно- и диэтилсульфатов и последующем гидролизе их с получением спирта и кислоты. При прямой гидратации происходит присоединение молекулы воды к молекуле этилена на поверхности катализатора. Оба метода получения синтетического этанола осуществляются в крупных промышленных масштабах.

С. В. Лебедев еще в 1910 г. впервые установил способность бутадиена к полимеризации с образованием каучукоподобного полимера. Классические исследования С. В. Лебедева в области полимеризации двуэтиленовых углеводородов [5] явились научной основой при разработке промышленного метода получения синтетического каучука.

Натуральный каучук, как и СКИ-3, характеризуется низким значением плотности энергии когезии, однако невулканизоваиные сажевые смеси на основе НК отличаются высокой когезионной прочностью (сопротивление разрыву 1,5—2,0 МПа по сравнению с 0,1—0,4 МПа для СКИ-3), НК обладает также значительно лучшей адгезией к стали и успешно применяется в производстве клеев. Поэтому проблема получения синтетического полиизопрена, по свойствам не уступающего натуральному, была прежде всего связана с выяснением отличий в строении, определяющих различия в свойствах этих двух полимеров.

Акрилонитрил вырабатывают путем взаимодействия ацетилена и цианистого водорода в присутствии хлористой меди и хлористого аммония при температуре 80—90°. Получающийся продукт улавливается в абсорбере водой. Водный раствор акрило-нитрила поступает в десорбционную колонну, где акрилонитрил отгоняется при помощи водяного пара. После отделения от воды и очистки дистилляцией чистота продукта достигает 99,9%. Акрилонитрил используется для получения синтетического каучука и новых акриловых волокон (орлан, акрилан и цианамид).

Применение перхлорвинила. Перхлорвинил широко применяется в лакокрасочной промышленности для производства лаков и эмалей, в том числе стойких к атмосферным воздействиям и агрессивным средам. Перхлорвинил используют в химической промышленности для защитного покрытия химической аппаратуры. Он широко используется для получения синтетического волокна хлорин, из которого изготавливают фильтровальные ткани, канаты, ленты для транспортеров, рыболовные сети, ткани для спецодежды и лечебного белья.

Существует общее мнение, что уже в конце нашего столетия важное место в энергоснабжении займут синтетические виды топлива. Одним из них будет заменитель природного газа, которому и посвящается настоящая книга. К другим видам синтетического топлива относятся газы с более низкой теплотой сгорания, которые можно получать описанными в данной работе методами, и целый ряд жидких продуктов. Они будут дополнять, а в конечном счете и заменять природный газ и обычную сырую нефть как топливо и как сырье. Основным сырьевым материалом для получения синтетического топлива будет уголь, начиная от лигнитов и кончая каменными углями, поскольку его запасы огромны. Значительная роль отводится и таким ресурсам, как нефтеносные сланцы, битуминозные песчаники и тяжелая нефть.

Какими бы ни оказались потребности в синтетическом топливе, для того чтобы его получать, необходимо начать работы в данном направлении. Первым препятствием на этом пути являются экономические факторы, вторым — технические возможности, в частности методы сжижения угля, а также перспективные высокопроизводительные процессы газификации угля. Экономическая проблема заключается в том, что уровень капиталовложений на единицу мощности завода по производству синтетического топлива выше уровня капиталовложений в добычу сырой нефти и природного газа обычными методами. Таким образом, желающие заняться производством синтетического топлива должны быть уверены в том, что их проект окажется жизнеспособным за счет установления более высоких цен на производимый продукт или благодаря поддержке, гарантиям или субсидиям со стороны правительства. Со временем необходимость иметь такие гарантии исчезнет, так как добыча полезных ископаемых обычными методами становится все более трудоемким и дорогостоящим процессом. Однако для разрабатываемых в настоящее время наземных методов получения синтетического топлива особых перспектив снижения капиталовложений на единицу мощности завода не предвидится.

Акрилонитрил вырабатывают путем взаимодействия ацетилена и цианистого водорода в присутствии хлористой меди и хлористого аммония при температуре 80—90°. Получающийся продукт улавливается в абсорбере водой. Водный раствор акрило-нитрила поступает в десорбционную колонну, где акрилонитрил отгоняется при помощи водяного пара. После отделения от воды и очистки дистилляцией чистота продукта достигает 99,9%. Акрилонитрил используется для получения синтетического каучука и новых акриловых волокон (орлан, акрилан и цианамид).

Адипиновая кислота применяется для получения синтетического волокна — найлона1. Найлон — чрезвычайно прочное и эластичное волокно, изготовляется из полиамида, который получают синтетически — сплавлением гексаметилендиамина и ади-пиновой кислоты; этот полиамид состоит из цепочек следующего строения:

жидкость с ГКип = 34,1°С. Входит в состав природного (натурального) каучука и других соединений. Служит основным мономером для получения синтетического каучука.

Образовавшийся акрнлонитрил — очень важный продукт, который в качестве мономера служит для получения синтетического волокна — нитрона,




Предварительным смешением Предварительной координации Получение акрилонитрила Получение антрахинона Палладиевом катализаторе Получение цианистого Получение дисперсий Получение гомологов Получение линейного

-
Яндекс.Метрика