Главная --> Справочник терминов


Позволяет обнаружить процесс позволяет обеспечить тонкую очистку газа от меркаптанов (до 0,5 — 1 мг/м3);

Процесс ДЭА-очистки с концентрацией диэтаноламина 25—27% применяют при парциальном давлении кислых газов 0,2 МПа и более, процесс SNPA— ДЭА (25—30% активного вещества) используют при парциальном давлении кислых газов 0,4 МПа и выше. Это позволяет обеспечить необходимое насыщение раствора и таким образом использовать преимущества процесса: степень насыщения раствора в процессе SNPA — ДЭА достигает 1 — 1,3 моль/моль ДЭА (против 0,3—0,4 для МЭА-процесса). Однако несмотря на высокую степень насыщения растворителя в SNPA — ДЭА-процессе поглотительная способность раствора ДЭА меньше,

По мере увеличения потребности в углеводородном сырье (этане и сжиженных газах) совершенствовались схемы масло-абсорбционных установок: в 50—60-х годах широкое распространение получили схемы низкотемпературной абсорбции (НТА), где для охлаждения технологических потоков наряду с водяными (воздушными) холодильниками стали применять специальные холодильные системы (такие же, как в схемах НТК). Технологическая схема низкотемпературной абсорбции состоит как бы из двух частей: блока предварительного отбензинивания исходного газа, представляющего собой узел НТК, и блока низкотемпературной абсорбции, где происходит доизвлечение углеводородов из газа, прошедшего через блок НТК. Такое комбинирование процессов делает схему низкотемпературной абсорбции (НТА) достаточно гибкой и универсальной — она может быть использована для извлечения этана и более тяжелых углеводородов из газов различного состава. Применение схем НТА позволяет обеспечить высокое извлечение пропана из нефтяных газов при сравнительно умеренном охлаждении технологических потоков: на установках НТА для извлечения 90—95% пропана достаточно иметь холодильный цикл с изотермой —30 н—38 °С, на установках НТК для этого требуется изотерма —80 н—85 °С.

первой ступени с сухим газом абсорбера (при давлении 5,9 МПа). Такая схема позволяет обеспечить оптимальные условия для проведения процессов, протекающих в абсорбере и абсорбционно-отпарной колонне.

Сравнение результатов испытаний обычных и многопоточных ситчатых тарелок показало [37, 38], что новые контактные устройства имеют более низкое гидравлическое сопротивление и высоту «пены» и менее чувствительны к изменению нагрузок по жидкости. Преимущества их возрастают с увеличением диаметра аппарата и плотности орошения (рис. V.18). Развитый периметр слива на этих тарелках позволяет обеспечить нормальную работу массообменной аппаратуры при увеличении плотности орошения до 150—180 м3/(м2-ч), для обычных ситчатых и клапанных таречок максимальная плотность орошения не превышает 60—80 м3/(мг-ч).

Процесс ДЭА-очйстки с концентрацией диэтаноламина 25—27% применяют при парциальном давлении кислых газов 0,2 МПа и более, процесс SNPA— ДЭА (25—30% активного вещества) используют при парциальном давлении кислых газов 0,4 МПа и выше. Это позволяет обеспечить необходимое насыщение раствора и таким образом использовать преимущества процесса: степень насыщения раствора в процессе SNPA — ДЭА достигает 1 — 1,3 моль/моль ДЭА (против 0,3—0,4 для МЭА-процесса). Однако несмотря на высокую степень насыщения растворителя в SNPA — ДЭА-процессе поглотительная способность раствора ДЭА меньше,

По мере увеличения потребности в углеводородном сырье (этане и сжиженных газах) совершенствовались схемы масло-абсорбционных установок: в 50—60-х годах широкое распространение получили схемы низкотемпературной абсорбции (НТА), где для охлаждения технологических потоков наряду с водяными (воздушными) холодильниками стали применять специальные холодильные системы (такие же, как в схемах НТК). Технологическая схема низкотемпературной абсорбции состоит как бы из двух частей: блока предварительного отбензинивания исходного газа, представляющего собой узел НТК, и блока низкотемпературной абсорбции,, где происходит доизвлечение углев'одородов из газа, прошедшего через блок НТК. Такое комбинирование процессов делает схему низкотемпературной абсорбции (НТА) достаточно гибкой и универсальной — она может быть использована для извлечения этана и более тяжелых углеводородов из газов различного состава. Применение схем НТА позволяет обеспечить высокое извлечение пропана из нефтяных газов при сравнительно умеренном охлаждении технологических потоков: на установках НТА для извлечения 90—95% пропана достаточно иметь холодильный цикл с изотермой —30-;—38 °С, на установках НТК для этого требуется изотерма —80 н—85 °С.

первой ступени с сухим газом абсорбера (при давлении 5,9 МПа). Такая схема позволяет обеспечить оптимальные условия для проведения процессов, протекающих в абсорбере и абсорбционно-отпарной колонне.

Сравнение результатов испытаний обычных и многопоточных ситчатых тарелок показало [37, 38], что новые контактные устройства имеют более низкое гидравлическое сопротивление и высоту «пены» и менее чувствительны к изменению нагрузок по жидкости. Преимущества их возрастают с увеличением диаметра аппарата и плотности орошения (рис. V.18). Развитый периметр слива на этих тарелках позволяет обеспечить нормальную работу массообменной аппаратуры при увеличении плотности орошения до 150—180 м8/(м2-ч), для обычных ситчатых и клапанных тареток максимальная плотность орошения не превышает 60—80 м3/(м2-ч).

В тех случаях, когда растительное сырье особенно богато пентозанами, процесс гидролиза ведется в две фазы, что позволяет обеспечить наилучшие условия для производства как фурфурола, так и этилового спирта. Подобное разделение процесса гидролиза оказывается возможным благодаря большей легкости гидролитического расщепления пентозанов сравнительно с целлюлозой. Вследствие этого, после обработки сырья в более мягких условиях получают пентозный гидролизат и смесь целлюлозы и лигнина. Последняя предназначается для дальнейшего гидролиза, а пентозный гидролизат отделяется и используется для производства фурфурола. Это достигается или посредством нагревания кислого раствора пентоз до полного превращения последних в фурфурол и отделения его ректификацией, или же путем продувки гидролизата острым паром, причем образующийся фурфурол вместе с паром увлекается в специальную аппаратуру для улавливания и отделения. Подобным же образом могут обрабатываться и богатые пентозами сульфитные щелока, образующиеся при переработке древесины; имеются сведения, что [м3 подкисленного серной кислотой щелока может дать до 9—10 кг фуфрурола (34).

Тем не менее, очевидно, что суспензионные процессы отличаются повышенными расходными коэффициентами по пару и охлаждающей воде, значительно уступая по этим показателям процессам растворной и газофазной полимеризации. Исключение составляют процессы фирм «Сольвей» и «Филлипс», в которых расход охлаждающей воды приближается к таковому в растворных процессах. Расход электроэнергии в суспензионных процессах в 4,5—5 раз ниже, чем в производстве ПЭВД. Следует учитывать, что на энергозатратах наряду с технологией существенно сказывается и аппаратурное оформление узла полимеризации. В этом отношении особого внимания заслуживает петлевой реактор для полимеризации этилена, используемый фирмами «Сольвей» и «Филлипс», который позволяет обеспечить теплосъем через рубашку при мощности линии 70 тыс. т/год в одном реакторе.

Коллектор. Наиболее сложным представляется создание общего футерованного коллектора. Поскольку футеровка может выкрашиваться, ее изнутри облицовывают жароупорной сталью. В работе [16] описан коллектор не только футерованный, но и с наружной водяной рубашкой под низким давлением. Водяная рубашка предотвращает перегрев силового корпуса при разрушении футеровки, но в то же время не позволяет обнаружить места повреждения. В коллекторе можно разместить поверхности охлаждения котла-утилизатора, что позволит отказаться от футеровки. В этом случае стенки коллектора подвергаются нагреву до температуры, близкой к температуре газа на выходе из котла-утилизатора, т. е. до 400 °С. Прочность стали при такой температуре значительно выше, чем при 800—850 °С.

Эта реакция крайне чувствительна и позволяет обнаружить даже следы ионов Fe3 + .

Нитроловые кислоты могут быть извлечены эфиром и образуют окрашенные в красный цвет щелочные соли; эта цветная реакция настолько чувствительна, что позволяет обнаружить даже очень малые количества первичных нитросоединений.

Рассмотрим экструзионную линию для производства голубых пакетов из рулона пленки, полученной методом раздува. Можно изготовить пакеты из такого рулона и оценить однородность их окраски. Если все пакеты на вид одинаково окрашены, а количественная оценка показывает, что они содержат фактически одно и то же количество голубого пигмента, значит пленка совершенно макрооднородна. И напротив, если анализ показывает, что общая концентрация пигмента практически одинакова во всех пакетах, но внешний вид отдельных пакетов неодинаков, и они имеют пятна, полосы, прослойки и т. д., то это означает наличие определенной текстуры. Следовательно, такой анализ позволяет обнаружить как различия в содержании пигмента в отдельных пакетах, так и различия в текстуре. Если смесь, поступающая в экструдер, неоднородна по составу, то с большой вероятностью можно обнаружить на рулоне пленки участки, окрашенные в голубой цвет и совсем не окрашенные, или участки с широкой гаммой оттенков голубого цвета.

Под текстурой понимают композиционную неоднородность, проявляющуюся в наличии пятен, полос и прослоек, обнаруживаемых визуально. Отбор случайных проб «вслепую» в различных точках объекта может свидетельствовать о наличии композиционной неоднородности и даже об интенсивности этой неоднородности, но не дает представления о характере текстуры. Случайный отбор проб в отдельных течках не позволяет обнаружить порядок, проявляющийся в текстуре. Текстура имеет большое значение при переработке полимеров, поскольку: а) ламинарное и распределительное смешения неизбежно приводят к образованию текстуры; б) для многих изделий отсутствие или, напротив, наличие требуемой текстуры определяется в результате специального визуального контроля; в) механические свойства композиций зависят от текстуры смеси.

Изучение деформируемости пленки полимера непосредственно в спектрометре ЯМР позволяет обнаружить и количественно оценить ориентацию цепей. Результаты метода ЯМР дают представление о характере соединения атомных групп в цепи (оценка числа структурных образований «голова к голове» и «голова к хвосту»). Особенно важные сведения можно получить методом ЯМР при изучении структурных особенностей етереорегулярных полимеров, в частности, определить содержание изо- или синдиотактических триад. Аналогичная информация о конфигурации цепей может быть получена, и для сополимеров.

•окружение одинаково, называются эквивалентными, таковыми, например, являются протоны СН3-группы или бензольного кольца. Поле Н для всех эквивалентных ядер одинаково, а для неэквивалентных— различно (для них отличаются условия резонанса). В результате сигнал ЯМР-поглощения состоит из нескольких пиков, каждый из которых соответствует какому-то одному сорту эквивалентных ядер. Полученная картина называется спектром ядерного магнитного резонанса высокого разрешения. Из таких спектров ЯМР можно делать заключения о строении молекул. Форма линии ЯМР зависит как от расстояний, так и от углов, образуемых магнитным вектором и направлением ориентации макромолекул, что дает возможность исследовать процессы модификации структуры полимеров. Изучение деформируемости полимерных пленок непосредственно в спектрометре ЯМР позволяет обнаружить и количественно оценить ориентацию цепей, а также установить роль повторных ориентации в изменении структуры полимеров. Методом ЯМР можно изучать характер соединения атомных групп в цепи (оценивать число структурных образований «голова к голове» и «голова к хвосту»). Особенно важную информацию можно получить методом ЯМР при изучении структурных особенностей стерео-регулярных полимеров.

Исследование поведения стеклообразных полимеров в условиях циклических деформаций позволяет обнаружить некоторые релаксационные переходы при Т^Т,.. На рис. 10.7 схематически показаны релаксационные переходы в полиметилметакрилате. Релаксационный переход, соответствующий Тс, называется главным или а-переходом. Другие переходы — это соответственно р- и ^-переход. Причины переходов, их молекулярный механизм не всегда можно однозначно установить. В случае полиметилметакрилата (ПММА)

(64 => 65) и тандем стадий нуклеофильного присоединения к сопряженной Двойной связи и последующего алкилирования енолята (65 => 66 + 67 + 68). Рассмотренный ретросинтетичсский анализ позволяет обнаружить конструктивные синтетические стадии, необходимые для построения основного скелета целевого соединения, но только в виде генеральной синтетической схемы без уточнения деталей. Чтобы превратить ее в рабочий план, нужно еще ввести пропущенные промежуточные ретроны и трансформы, отвечающие трансформациям функциональных групп, введению и удалению защит, слоном, доработать стратегическую концепцию до уровня последовательности конкретных тактических решений. Реальный синтез, осуществленный группой Данишефско го [Юа], начинался с производного циклопентенона 66 и включал 19 стадий, приводивших к квадрону (61) с общим выходом 3,1%.

В области синтеза простагландинов целостный анализ целевой структуры сразу же позволяет обнаружить генеральную стратегическую задачу: построить циклопентаноновую группировку с двумя боковыми цепями в требуемых положениях и с заданной стереохимией. Учет этих структурных особенностей приводит к разработке двух альтернативных подходов. В первом из них требуемая конфигурация создается путем выбора циклических предшественников со строго определенной ориентацией функционализированных заместителей (см., например, использование норборненового промежуточного продукта, схема 2.122). Альтернативный подход, который мы только что рассматривали (схема 3.32), основан на стереосслективном двустадийном присоединении кциклопентеноновому акцептору Михаэля.

ми словами, при образовании комплексов с этими катионами кислотность системы возрастает на 6—7 порядков. Прибавление К+, Mg2+ или Са2+ не оказывает заметного влияния на рА» соединения 261. Таким образом, заметное изменение цвета легко происходит, когда 261 в слабощелочной среде приходит в контакт со следовыми количествами Na+ или Li+, способными к образованию комплекса, в то время как ионы К+ никакого влияния на цвет раствора не оказывают. Чувствительность этой цветной реакции поразительна: она позволяет обнаружить катионы первых двух щелочных металлов при концентрациях вплоть до 10~8 М в присутствии других катионов. Это означает, что растворы с концентрацией натриевых солей даже 5 • 10~5 мг/л оказываются слишком грязными для использования этого реагента. Такая чувствительность создает довольно необычные трудности при работе с 261. Обычные органические растворители, в том числе CHCL3 или СН2С12, хранившиеся в стеклянных сосудах, могут, как оказалось, содержать достаточно ионов натрия для того, чтобы изменять цвет добавляемых к ним следовых количеств 261. Поэтому приходилось принимать специальные меры предосторожности при работе с этим сферандом, направленные на устранение подобных загрязнений из растворителей и реагентов (между прочим, кому бы раньше могло придти в голову, что хлороформ нужно очищать от примеси... натрия?!), а все операции выполнять только в кварцевой, полипропиленовой или тефлоно-вой аппаратуре. Очевидно, насколько важным может быть такой сверхчувствительный и строго селективный реагент для аналитической химии. Вот прямой практический результат молекулярного дизайна!




Поверхностной обработки Поверхностного натяжения Поверхностно активными Поворотно изомерная Повторяют несколько Получения соединений Повторной перегонки Повторное метилирование Повторном плавлении

-
Яндекс.Метрика