Главная --> Справочник терминов


Позволяет оценивать Флуоресцеин образует темно-желтые кристаллы, которые растворяются в щелочах с оранжевым окрашиванием и сильной, очень красивой зеленой флуоресценцией. Последняя настолько интенсивна, что позволяет обнаруживать даже очень незначительные количества красителя. Поэтому флуоресцеиновая проба используется для качественного определения л-диоксибензолов, а также фталевого ангидрида. Интересно применение этого красителя для установления места слияния различных водных источников.

Достоинствами микротвердомера МТР-1 являются: отсутствие трения скольжения стержня индентора; особая конструкция подвески индентора, устанавливаемой строго вертикально к поверхности образца, что исключает боковые составляющие силы и, следовательно, уменьшает разброс показаний при повторных измерениях; автоматическое нагружение и разгружение индентора по заданной программе, чем обеспечивается точность получаемых данных при строго определенном времени выдержки индентора на образце. Прибор позволяет обнаруживать даже небольшие изменения твердости, происходящие в резинах под воздействием физико-химических факторов.

Некоторые более стабильные радикалы, например РЬ3С»,могут быть обнаружены, просто исходя из данных по определению молекулярного веса, однако достоверные данные этим методом удается получить только в редких случаях. Иногда радикалы в отличие от соединений, из которых они образуются, обладают окраской, что позволяет обнаруживать их колориметрическим методом. Если же сами радикалы бесцветны, то об их образовании можно судить по скорости, с которой они обесцвечивают раствор стабильного радикала дифенилпикрилгидразила. Этот прием может служить примером уже упомянутого метода, основанного на «использовании радикала для захвата другого радикала» (см. стр. 279). Лучшим доказательством обнаружения радикала этим методом является, конечно, выделение (если это возможно) смешанного продукта взаимодействия двух радикалов. Другой химический метод обнаружения основан на способности радикалов инициировать полимеризацию, например оле-•фанов (см. стр. 293).

Выше уже упоминалось о возможности использования магнитного поля для обнаружения парамагнетизма, вызываемого наличием неспаренных электронов в радикалах (см. стр. 277). По идее этот подход очень прост, однако возможность его практического использования связана с рядом значительных технических трудностей; кроме того, этот подход не обеспечивает достаточной чувствительности и. позволяет обнаруживать радикалы только при их высоких концентрациях. Поэтому для обнаружения радикалов обычно предпочитают пользоваться другими, более чувствительными методами. Наиболее широкое применение получил метод электронного парамагнитного резонанса (ЭПР), основанный на способности электрона ориентироваться в зависимости от спинового квантового числа ( + 1/2 или —1/2) либо по направлению магнитного поля, либо в противоположном направлении. Таким образом, в магнитном поле неспаренный электрон может существовать в одном из двух энергетических состояний, переход между которыми приводит к характерному поглощению в микроволновой области спектра. Этот метод позволяет обнаруживать промежуточные радикалы, присутствующие в крайне низких концентрациях (~1(Н2 моль).

Некоторые более стабильные радикалы, например Ph3C»,могут быть обнаружены, просто исходя из данных по определению молекулярного веса, однако достоверные данные этим методом удается получить только в редких случаях. Иногда радикалы в отличие от соединений, из которых они образуются, обладают окраской, что позволяет обнаруживать их колориметрическим методом. Если же сами радикалы бесцветны, то об их образовании можно судить по скорости, с которой они обесцвечивают раствор стабильного радикала дифенилпикрилгидразила. Этот прием может служить примером уже упомянутого метода, основанного на «использовании радикала для захвата другого радикала» (см. стр. 279). Лучшим доказательством обнаружения радикала этим методом является, конечно, выделение (если это возможно) смешанного продукта взаимодействия двух радикалов. Другой химический метод обнаружения основан на спрсоб-ности радикалов инициировать полимеризацию, например оле-•финов (см. стр. 293),

Выше уже упоминалось о возможности использования магнитного поля для обнаружения парамагнетизма, вызываемого наличием неспаренных электронов в радикалах (см. стр. 277). По идее этот подход очень прост, однако возможность его практического использования связана с рядом значительных технических трудностей; кроме того, этот подход не обеспечивает достаточной чувствительности и. позволяет обнаруживать радикалы только при их высоких концентрациях. Поэтому для обнаружения радикалов обычно предпочитают пользоваться другими, более чувствительными методами. Наиболее широкое применение получил метод электронного парамагнитного резонанса (ЭПР), основанный на способности электрона ориентироваться в зависимости от спинового квантового числа ( + 1/2 или —1/2) либо по направлению магнитного поля, либо в противоположном направлении. Таким образом, в магнитном поле неспаренный электрон может существовать в одном из двух энергетических состояний, переход между которыми приводит к характерному поглощению в микроволновой области спектра. Этот метод позволяет обнаруживать промежуточные радикалы, присутствующие в крайне низких концентрациях (~10~12 моль).

ленькими навесками рекомендуется также в тех случаях, когда энергия переходов очень велика. Анализ с большими навесками позволяет обнаруживать слабые переходы, проводить более точно количественные измерения; выделение больших количеств летучих продуктов обеспечивает возможность последующего их определения.

тельно высокой чувствительностью и позволяет обнаруживать

тив Эрдмана, который позволяет обнаруживать лупинин.

Для изучения водородных связей в полимерах используют метод инфракрасной спектроскопии (см. 5.4, 9.1 и 9.3). При образовании Н-связей между гидроксильными группами полоса валентных колебаний в ИК-спектре смещается в сторону меньших частот, причем тем больше, чем выше энергия Н-связи. Кроме того, полоса уширяется, а интенсивность ее увеличивается. Более четко проявляется Н-связь в ПМР-спектрах (см. 5.4); происходит смещение сигнала протона связи О-Н в сторону более слабого поля. Метод ПМР более чувствителен по сравнению с ИК-спектроскопией и позволяет обнаруживать очень слабые связи. Для кристаллических полимеров ценную информацию дает метод рентгеноструктурного анализа (см. 5.4 и 9.4.6).

ленькими навесками рекомендуется также в тех случаях, когда энергия переходов очень велика. Анализ с большими навесками позволяет обнаруживать слабые переходы, проводить более точно количественные измерения; выделение больших количеств летучих продуктов обеспечивает возможность последующего их определения.

Позитрон тоже может играть роль зонда. Дело в том, что безотносительно к характеру связей цепи (ср. § 1), время жизни позитрона до аннигиляции в кристаллической и аморфной областях различается, а это позволяет оценивать степень кристалличности [25, с. 48].

С двойным лучепреломлением полимеров связано возникновение явления фотоупругости (в механическом поле), эффекта Керра (в электрическом поле) и эффекта Коттона—Мутона (в магнитном поле). Фотоупругость полимеров зависит от их фазового и физического состояния. Метод фотоупругости используется для изучения характера распределения внутренних напряжений в полимерах без их разрушения [9.4]. Изучая эффект Керра в полимерах, можно оценить эффективную жесткость полярных макромолекул, мерой которой служит корреляция ориентации электрических диполей вдоль цепей [9.5]. Наблюдение эффекта Коттона — Мутона (проявление дихроизма в магнитном поле), обусловленного диамагнитной восприимчивостью и анизотропией тензора оптической поляризуемости, позволяет оценивать значения коэффициентов вращательного трения макромолекул полимеров. Все эти методы исследования оптических свойств полимеров получили широкое распространение и, так же как и спектроскопические методы, в достаточной МРПЛ описаны в литературе [9.6; 50].

Измерение в широком интервале температур при разных скоростях нагрева (или охлаждения) относительных изменений длин или объемов, а также теплоемкости позволяет оценивать значения коэффициентов линейного и объемного расширения, а также ширину температурных интервалов релаксационных и фазовых переходов. Наиболее резкие изменения теплофизических характеристик полимеров наблюдаются при охлаждении в областях стеклования и кристаллизации, а при нагревании — в областях размягчения и плавления.

Изучение структуры полимеров может осуществляться различными физическими методами, в том числе методом электронной микроскопии, который позволяет оценивать некоторые особенности надмолекулярного строения полимеров в диапазоне размеров от нескольких десятков ангстрем до сотен микрон. Электронная микроскопия обычно применяется в совокупности с другими методами исследований, такими, как оптическая микроскопия, дифракция рентгеновых лучей и электронография.

прочных. Симметрия кривой распределения позволяет оценивать прочность как среднее из всех полученных значений. Среднее значение совпадает с прочностью, соответствующей максимуму кривой распределения.

Все рассмотренные процессы имеют два недостатка: во-первых, данные, описывающие процесс формования в целом, имеют ограниченный характер; во-вторых, результаты в значительной мере зависят не от свойств композиции, а от конструкции и принципа работы измерительных устройств, в частности от шероховатости поверхности пресс-формы. Вот почему результаты, полученные в нескольких научно-исследовательских институтах, сопоставимы лишь качественно. Более удовлетворительные результаты получены для материалов, изготовленных методом прямого прессования. Для литьевого прессования необходимо знать еще вязкость расплава и продолжительность стадии плавления. Эти показатели можно определить эмпирическим путем с помощью крутильного вискозиметра [24] с измерительными головками сигмаидального типа (пластометр Брабендера). В этом случае отношение крутящий момент (вязкость) — время позволяет оценивать и корректировать степень текучести композиции (рис. 10.7).

Расчеты, проведенные по формуле (382), показывают достаточно хоро-е согласие расчетных и экспериментальных значений у, причем расхожде-i примерно такие же, как и при расчете с помощью парахора. Соотношение 2) позволяет оценивать вклад отдельных полярных групп и специфическо-нежмолекулярного взаимодействия в величину поверхностного натяжения, с, например, обычно интересуются вкладом водородных связей, вносимым юрмирование поверхностных свойств органических жидкостей. Оценим юй вклад на примере спиртов и кислот. Для этого преобразуем соотноше-з (382) к виду

Уэланда (74), (75) и (76), что в свою очередь позволяет оценивать

падает с DT. Это позволяет оценивать индивидуальную

менты, величина которых позволяет оценивать гибкость

ных полимеров позволяет оценивать влияние суммар-




Поверхностной твердостью Получения смешанных Повидимому представляет Переработка термопластичных Повторным использованием Повторной кристаллизации Повторной ректификации Переработке древесины Поучительно рассмотреть

-
Яндекс.Метрика