Главная --> Справочник терминов


Превращениях полимеров Несколько упрощенная схема основных химических превращений, протекающих при синтезе ДМД, показана на схеме. Рассмотрение схемы делает понятным позицию многих компетентных исследователей, высказывавших в 30—40-х гг. сомнения в возможности осуществления целенаправленного синтеза ДМД с технически приемлемыми выходами. Однако детальное исследование кинетики процесса в целом и его отдельных стадий позволило в последующий период найти технологические решения, обеспечивающие проведение этого синтеза с селективностью, близкой к теоретической.

Кинетические кривые основных превращений, протекающих при взаимодействии изобутилена с формальдегидом:

Поучительно проследить, как создавалось представление о содержании этого различия. В 30-х и 40-х годах химизм низкотемпературного окисления углеводородов явился предметом многочисленных исследований, вскрытию же природы превращений, протекающих при верхнетемпературном окислении, было уделено мало внимания и о его химизме было известно лишь немногое. Поэтому, если при обсуждении низкотемпературного окисления авторы химической теории детонации могли оперировать рядом экспериментальных данных и установленных представлений, то при переходе к верхнетемпературному окислению они из-за отсутствия подобного материала оказывались в значительно более трудном и неопределенном положении. В результате установление различия в химизме нижне- и верхнетемпературного окисления производилось не путем их экспериментального сравнения, а скорее путем отрицания для верхнетемпературной реакции того, что является особо характерным для нижнетемпературной реакции. А так как сторонникам химической теории детонации в двигателе наиболее характерным свойством холоднопламенного окисления представлялось накопление в пламени либо органических перекисей, либо продуктов их распада — свободных радикалов, — то именно это образование перекисных соединений и их определяющая роль для развития всего процесса отрицалась для верхнетемпературного окисления.

Асимметрический (частичный асимметрический) синтез может быть результатом разнообразных химических превращений, протекающих с участием оптически активных вспомогательных веществ: это могут быть реакции замещения, отщепления, присоединения, в ходе которых образуется асимметрический центр. В определенном смысле промежуточными между расщеплением рацематов и асимметрическим синтезом являются процессы «активирования» рацематов путем кинетических превращений или кинетического расщепления (см. ниже). Эти процессы мы рассмотрим в следующем разделе, а затем перейдем к различным типам реакций асимметрического синтеза.

Реакция цианэтилирования является частным случаем обширной группы превращений, протекающих в присутствии основных катализаторов. Эти превращения, заключающиеся в присоединении веществ, содержащих подвижные атомы водорода к а, ^-ненасыщенным нитрилам, кето-нам, сложным эфирам и т. д., в общем виде называются {^акцией Михаэля. Особенно легко эти реакции идут с акрилонитрилом« В реакции с ак-рилонитрилом вступают многочисленные соединения, у-которых нуклео-фильиая активность по отношению к другим ненасыщенным системам ничтожна.

Схема (Г. 7.100)—это прототип всех альдольных реакций и родственных превращений, протекающих под каталитическим влиянием оснований. Поскольку стадии являются равновесными, то образовавшиеся аддукты могут быть в принципе снова расщеплены при действии оснований.

Следующая особенность реакций биосинтеза органических соединений, протекающих в живой клетке (in vivo), заключается в высокой (практически абсолютной) степени их стереоселек-тивности — энантиоселективности в первую очередь. Если в ходе каких-либо превращений в молекуле возникает новый, очередной или первый, асимметрический центр, то в случае реакций in vivo образуется один энан-тиомер, в отличии от тех же превращений, протекающих вне живой клетки (in vitro) и без привлечения хираль-ных катализаторов, всегда приводящих к рацемату (схема 1.1.3).

группы превращений, протекающих в присутствии основных катализаторов.

тельно лучше описывается как 1,2-сдвиг (см. также разд. 15.6.3.1). По такому механизму протекают многие реакции карбонилирова-ния, например превращение метанола в уксусную кислоту (схемы 101, 102). Другие примеры подобных превращений,протекающих с участием карбонильных комплексов железа и кобальта, приведены ниже (схемы 103, 104). Детали этих процессов подробно обсуждаются в разделе, посвященном реакциям карбонилирования (см. разд. 15.6.3.6).

Судя по ЯК-спектрам, характер химических (превращений, (протекающих при нэг-ревэлии ХСПЭ с суль/фенамидами различного строения, при введении оксида магния не изменяется. По своей активности при сшивании этого полимера сульфенамиды располагаются в такой же последовательности, как и в отсутствие оксида.

При замене ТМТД на тиурамы .меньшей (ТМТМ) и большей (ТЭТТ, тетрон А) сульфидности характер химических превращений, протекающих при нагревании их -с ХСПЭ, не изменяется. Во-всех случаях начальной стадией процесса является распад тиурама-на радикалы, а образующиеся продукты (подвески и поперечные-связи) содержат ионизированные группировки. Так как ТМТМ меньше других тиурамов склонен к радикальному распаду, иии-

Любые химические превращения полимерных соединений имеют много общего с реакциями низкомолекулярных соединений, содержащих те же функциональные группы. Однако вследствие макромолекулярной структуры полимерных веществ химические превращения их отличаются определенным своеобразием. Первая особенность заключается в легкости термической и окислительной деструкции макромолекул полимеров. Эти явления сопровождаются уменьшением молекулярного веса полимера и образованием новых функциональных групп в отдельных звеньях цепей. Окислительная деструкция становится более интенсивной, если полимер находится в растворе (особенно при нагревании такого рас-гвора), поскольку доступ кислорода к отдельным макромолекулам в этом случае облегчается. Поэтому химические превращения полимеров следует проводить только при возможно более низкой температуре и возможно быстрее, чтобы уменьшить термическую и окислительную деструкцию цепей макромолекул. Окислитель-пая деструкция, протекающая в большей или меньшей степени при любых химических превращениях полимеров, изменяет структуру некоторых звеньев макромолекул. Выделить из состава полимера отдельные продукты окислительной деструкции невозможно, так как они соединены ковалентными связями с соседними <веньями макромолекул.

Если при химических превращениях полимеров изменяется степень полимеризации (а иногда и структура основной цепи полимера), то такие реакции называются макромолекулярными.

Различные эффекты, влияющие на скорость и степень превращения функциональных групп в полимерах, могут тесно переплетаться друг с другом. Так, надмолекулярные эффекты могут быть связаны с конфигурационными, так как степень кристалличности определяется конфигурацией макромолекул (изо- или синдиотак-тическая, цис- или транс-формы). Поэтому часто можно наблюдать суммарное, совокупное проявление нескольких эффектов в конкретных химических реакциях. Подобным образом полимеранало-гич'ные превращения могут приводить к образованию новых продуктов, которые затем участвуют во внутри- или межмакромолеку-лярных превращениях полимеров. Приведем в этой связи несколько характерных примеров.

Штаудингер, наблюдая очень высокую вязкость даже низкоконцентрированных растворов высокомолекулярных соединений, высказал предположение о существовании очень длинных, неассоциированных между собой молекул, размеры которых обусловливают все особенности высокомолекулярных соединений. Для доказательства своей теории Штау-дингер изучил химические превращения многих природных, а впоследствии синтетических полимеров. Ему удалось показать, что при химических превращениях полимеров в мягких условиях сохраняется исходная степень полимеризации, что невозможно, если допустить участие

Большинство этих реакций используют в промышленности для получения технически ценных продуктов. Однако они могут быть и побочными при химических превращениях полимеров.

Важную роль при химических превращениях полимеров играют стерический и статистический факторы. Подвижность реакцион-носпособных групп сильно ограничена, так как они непосредственно связаны с главной цепью макромолекулы. Кроме того, боковые реакционноспособные группы экранируются главной цепью макромолекулы. Экранирование и возникающее вследствие этого замедление реакции вызывается также и тем, что макромолекулы в растворе представляют собой более или менее спутанные клубки, причем форма макромолекул может изменяться во время реакции, облегчая или затрудняя превращения. При реакциях с двойными связями у полидиенов (например, эиоксидирование) можно использовать различия в положении двойных связей в 1,2-или 1,4-звеньях. Наконец, при превращениях стереорегулярных макромолекул (например, при омылении полиметакрилатов) сте-реоизомерная структура макромолекулы влияет на ход реакции.

Кроме того, повышение температуры усиливает роль побочных реакций, требующих сравнительно высокой энергии активации и слабо выраженных при низких температурах. Речь идет о реакциях между функциональными группами полимера и мономера, о химических превращениях полимеров и деструктивных процессах, о присоединении молекул друг к другу не только по схеме «голова к хвосту», но также по принципу «голова к голове», о присоединении молекул диенов в положениях 1, 2 и 3, 4 и т. д. В результате характер сочетания звеньев на одних участках макромолекулы отличен от порядка их взаимного расположения на других; иными словами, усиливается нарушение регулярности строения полимерной молекулы.

При любых химических превращениях полимеров вследствие легкости окислительной и термической (иногда и гидролитической) деструкции макромолекул снижается молекулярная масса полимера, а также образуются новые функциональные группы и изменяется структура в отдельных звеньях его цепи. Интенсивность окислительной деструкции возрастает, если реакция проводится в

Кроме того, повышение температуры усиливает роль побочных реакций, требующих сравнительно высокой энергии активации и слабо выраженных при низких температурах. Речь идет о реакциях между функциональными группами полимера и мономера, о химических превращениях полимеров и деструктивных процессах, о присоединении молекул друг к другу не только по схеме «голова к хвосту», но также по принципу «голова к голове», о присоединении молекул диенов в положениях 1, 2 и 3, 4 и т. д. В результате характер сочетания звеньев на одних участках макромолекулы отличен от порядка их взаимного расположения на других; иными словами, усиливается нарушение регулярности строения полимерной молекулы.

При любых химических превращениях полимеров вследствие легкости окислительной и термической (иногда и гидролитической) деструкции макромолекул снижается молекулярная масса полимера, а также образуются новые функциональные группы и изменяется структура в отдельных звеньях его цепи. Интенсивность окислительной деструкции возрастает, если реакция проводится в

Химические превращения, протекающие в полимерах при действии на них лучистой энергии, уже давно интересовали человека. До последнего времени из различных видов излучений внимание исследователей привлекал главным образом свет. Та роль, которую играет свет в биохимических превращениях полимеров, а также в процессах их деструкции или старения, определяет необходимость того, что в будущем, как это было и в прошлом, большое число исследований в области полимерной химии будет по-прежнему посвящено исследованию фотохимических проблем. Преобладающее значение при этом приобретают работы по использованию световых воздействий в определенных контролируемых условиях для модификации свойств полимеров. Однако в последнее десятилетие еще более интенсивно, чем фотохимические превращения полимеров, исследовались вопросы взаимодействия полимерных веществ с ионизирующими излучениями (излучениями высокой энергии). Развитие исследований в этой области в большой степени связано с созданием промышленной ядерной технологии и новых более совершенных электронных и ионных ускорителей. Но оно было вызвано также и тем ожидаемым многообразием химических реакций, протекание которых должно стать возможным под действием излучений высокой энергии. Одновременное присутствие электронов, ионов, свободных радикалов и молекул в возбужденных и термолизованных состояниях явилось причиной появления многочисленных гипотез, имеющих целью объяснение наблюдаемых радиационно-химических превращений. Все более сложные экспериментальные исследования обеспечили получение данных, которые позволяли проверять и изменять эти гипотезы. Как будет видно из дальнейшего рассмотрения, ни один из предложенных механизмов нельзя считать однозначно доказанным.

В литературе все еще обсуждается вопрос об относительной роли, которую играют в радиационно-химических превращениях полимеров ионные и радикальные реакции. Большинство исследователей предлагает механизмы, включающие участие свободных радикалов. Однако предполагают также, что в твердых полимерах могут иметь место и ионные и ион-молекулярные реакции, аналогичные реакциям, протекающим в сильно разреженной среде ионизационной камеры масс-спектрометра. Эти вопросы будут кратко обсуждены в гл. IX-A.




Производства бутадиена Производства химических Производства мономеров Производства пенопластов Производства полиэфирного Производства полимерных Производства различных Производства синтетических Пероксидных радикалов

-
Яндекс.Метрика