Главная --> Справочник терминов


Прочность долговечность Для прочного слипания двух твердых тел необходимо обеспечить тесный контакт между их поверхностями, поскольку ван-дер-вааль-совы силы оказываются пренебрежимо малыми, если расстояние между молекулами превышает несколько ангстрем. Боуден и Тейлор [5] установили, что из-за существования микрошероховатостей на поверхности контакта (рис. 4.2) фактическая площадь контакта составляет очень небольшую часть номинальной площади контакта. Для адгезии твердых тел большое значение имеет не только величина фактической площади контакта, но также и отсутствие на поверхности контакта различных органических загрязнений или оксидов, наличие которых существенно уменьшает прочность адгезионного соединения. Существенное уменьшение площади фактического контакта может произойти из-за эластического восстановления пиков поверхностных шероховатостей, развивающегося после снятия нормальной нагрузки, обеспечивающей прижатие друг к другу контактирующих твердых тел. Чтобы предотвратить это уменьшение площади фактического контакта, необходимо произвести отжиг контактирующих поверхностей под действием сжимающей нагрузки. Часто для увеличения поверхности фактического контакта между двумя твердыми телами вводят слой жидкости, которая, затвердевая, обеспечивает необходимую для эксплуатации прочность адгезионного соединения.

Таким образом, конечная прочность адгезионного полимерного соединения будет зависеть от поверхностной энергии и смачивания, связанных, в свою очередь, с проявлением межмолекулярных сил на границе раздела фаз, характера и развитости микрорельефа, реологических и физико-химических свойств адгезива, давления, температуры и времени.

При дублировании двух слоев невулканизованных резиновых смесей, которые можно рассматривать как вязкие или упруговязкие жидкости, сравнительно быстро достигается плотный контакт по площади, соответствующей номинальной площади контакта. Если полимеры несовместимы термодинамически, то между ними сохраняется четкая граница раздела. При этом адгезия определяется межмолекулярным взаимодействием {32] или (при полном отсутствии воздушных включений, загрязнений и оксидных пленок на поверхности) когезионной прочностью более слабого компонент а._Если_же jro/mмеры совместимы_ (самопроизвольно смешиваются), то вследствие взаимодиффузии макромолекул будет происходить постепенное размывание границы контакта с образованием промежуточного диффузного слоя. При этом граничный слой приобретает свойства полимера в объеме и прочность адгезионного соединения также следует рассматривать с позиций общих представлений о природе (объемной) прочности полимеров. При соединении резиновой смеси с вулканизатом, даже если они приготовлены на основе совмещающихся каучуков, вследствие наличия пространственной устойчивой структуры у вулканизата возможна, главным образом, односторонняя диффузия смеси. Поэтому всегда сохраняется четкая граница раздела и глубокий микрорельеф поверхности. Истинная (фактическая) площадь контакта в этом случае может быть гораздо больше (в десятки раз) номинальной [39, 40] и при полном покрытии этого рельефа пластичной резиновой смесью прочность связи может быть довольно высокой (до 1—2 МПа), даже если удельное межмолекулярное или химическое взаимодействие сравнительно мало и имеются многочисленные дефекты и включения в граничном слое. Например сложная структура технических волокон (рис. 2.18) может быть причиной многих дефектов резино-кордной системы.

Для изготовления клеев на основе хлоркаучука и неопрена можно использовать те же растворители, что и для клеев на основе неопрена; ароматические углеводороды, хлорсодержащие растворители, эфиры и кетоны (за исключением ацетона). От выбора растворителя зависит клейкость и время выдержки клеевой композиции перед склеиванием, а также прочность адгезионного сс-единения. В клеевую композицию можно вводить наполнители (бланфикс, каолин, бентонит, диоксид кремния, силикаты), однако при этом следует учитывать возможное изменение свойств клея. В состав клея также входят стабилизаторы (эпоксидированное соевое масло, эпихлоргидрин, смесь оксидов цинка и магния) и антиоксиданты. Оптимальное соотношение между хлоркаучуком и неопреном в клеях общего назначения колеблется от 1 : 1 до 1 : 2.

Прочность адгезионного соединения зависит не только от взаимодействия молекул на границе фаз, но и от ряда других факторов (условия формирования адгезионного соединения, продолжительность контакта поверхностей, скорость приложения нагрузки и т. д.); существенное значение имеют механические свойства соединенных материалов, которые могут отличаться от соответствующих показателей тех же материалов, взятых в отдельности, вследствие изменения их структуры под влиянием силового поля твердой поверхности [53] —эффект дальнодействия.

Прочность адгезионного соединения зависит не только от взаимодействия молекул на границе фаз, но и от ряда других факторов (условия формирования адгезионного соединения, продолжительность контакта поверхностей, скорость приложения нагрузки и т. д.); существенное значение имеют механические свойства соединенных материалов, которые могут отличаться от соответствующих показателей тех же материалов, взятых в отдельности, вследствие изменения их структуры под влиянием силового поля твердой поверхности [53] —эффект дальнодействия.

Исследование процессов разрушения наполненных резин методом электронной микроскопии показывает [270], что разрыв происходит по извилистой линии от одной поверхности раздела каучук — наполнитель к другой. Поверхности частиц наполнителя или непосредственно примыкающие к ним области могут являться слабыми местами, по которым происходит разрушение. Многочисленные внутренние дефекты, характерные для структуры вулканизатов, вызывают повышенное рассеяние энергии вследствие увеличения объема резины, который необходимо подвергнуть сильному растяжению в процессе разрыва. Объем вовлеченной в процесс деформирования резины и величина рассеиваемой энергии деформации зависят от степени адгезии каучука к наполнителю. Таким образом, появление дефектов (гетерогенности) может не только ослаблять прочность адгезионного соединения, но и быть причиной упрочнения материала.

Экспериментальная прочность адгезионного сцепления твердых тел зависит от условий изготовления, формирования и разрушения склейки [12, 13], причем влияние различных факторов на адгезию невозможно учесть количественно или полностью исключить, поэтому как сами результаты измерений адгезии, так и истолкование их различными авторами различны [12—15]. В этой связи очевидно, что метод определения адгезии должен удовлетворять следующим требованиям: 1) наилучшим образом моделировать реальные условия адгезионного нагружения, 2) позволять проводить измерения адгезии всегда в одинаковых условиях (геометрическое подобие склеек, характера нагружения и т. д.) и относить результат к площади контакта полимеров, 3) сводить к минимуму искажения измеряемой величины различными факторами.

Для измерения адгезии нами был использован метод разрушения элементарного узла нетканого материала — выдергивание отдельного волокна (диаметром около 20 мк) из блока связующего (из «муфты», соизмеримой по размерам с диаметром волокна и закрепленной на специальных волокнах — носителях). Очевидно, в этом случае только сдвиг волокна дает возможность избежать когезионного разрушения связующего. Поверхность волокон предельно гладкая, площадь контакта мала (1 — 1,5'10~2лш2) и точно измерима [5]. Измерения адгезии проводились при комнатной температуре, каждое значение аа (прочность адгезионного сцепления) — среднее из 20—40 измерений, среднеквадратичная: ошибка — менее 10%.

Измерения свойств поверхности проводили с отдельными моноволокнами диаметром 20 мк. Методом сдвига [1] определяли удельную прочность адгезионного сцепления волокон со смолами, смачиваемость волокон оценивали по методике, предложенной в работе [2]. Все измерения проводила при комнатной температуре. Каждое значение в таблицах — среднее .из 20—40 измерений, разброс менее 10%.

Рассмотрим подробнее вопросы адгезионной прочности. Об адгезии обычно судят по удельной силе и удельной работе разрушения адгезионного соединения, т. е. по адгезионной прочности. Однако прочность адгезионного соединения (адгезионная прочность) зависит не только от молекулярного взаимодействия на границе раздела фаз, но и от условий формирования соединений, формы и размеров образцов, механических характеристик соединяемых материалов, условий приложения разрушающего напряжения и многих других факторов, не имеющих, строго говоря, к^адгезии непосредственного отношения. В этом одна из принципиальных трудностей, возникающих при изучении адгезии. Дело в том, что при разрушении адгезионного соединения значительная часть работы затрачивается на деформацию компонентов адгезионного соединения. Адгезионная прочность может быть приравнена к адгезии.только тогда, когда адгезионное соединение лишено каких-либо дефектов, а разрушение соединения производят с бесконечно малой скоростью [3]. Практически эти условия невыполнимы, и поэтому адгезия и адгезионная прочность не могут быть отождествлены.

Физико-механические свойства полиэтилена (такие, как прочность, долговечность, термостойкость, эластичность и т.д.) при этом ухудшаются.

Экспериментально определяемые величины, такие, как прочность, долговечность или концентрация свободных радикалов'), имеют широкий разброс значений. Это — стохастические переменные. В качестве предельного примера стохастической зависимости на рис. 3.1 дана гистограмма [3] долговечности t 500 труб из ПЭВП, испытанных при одинаковых условиях. Показанная зависимость может быть описана нормальным логарифмическим распределением (рис. 3.2) со средним значением \gt [ч], равным 2,3937, и вариацией s = 0,3043. Ожидаемое значение долговечности образца, подверженного испытанию, есть время, которое соответствует среднелогарифмиче-скому значению, равному в данном случае 247,6 ч. Очевидно, что реально определяемые значения t имеют широкий разброс относительно данного ожидаемого значения. Несмотря на это, даже такое распределение можно получить путем испытания лишь нескольких случайно выбранных образцов. Для нормального распределения экспериментальных величин любые три случайных значения попадают в среднюю область 1,69s, которая

Свойства полиэтилена (такие, как прочность, долговечность и т.д.) при этом ухудшаются.

Пластмассы используются в виде защитных пленок, а также для изготовления разнообразной тары, посуды, деталей машин и механизмов, труб. Они уменьшают вес изделий, повышают их прочность, долговечность, улучшают внешний вид, дают значительную экономию средств, времени и требуют меньших затрат труда.

Д;1ит^ль';ую прочность, долговечность, усталость в статических условиях определяют как правило, временем до разрушения т, а в динамических условиях — усталостной прочностью о,\-(т. е. кратковременной прочностью образца при растяжении, сжатии и т. д. после действия на него Лг циклов напряжения) или числом циклов до разрушения образца.

Влияние структуры и состава полимера на длительную прочность (долговечность, усталостную выносливость) осложняется действием химического фактора, в частности реакций окисления. Как известно, скорость окислений значительно повышается с ростом температуры п напряженности макромолекул:

Свойства студней первого тина зависят от строения по.ш-мера и растворителя, концентрации поперечных связен, степени набухания. Прочность, долговечность, другие физические свойства набухающих систем (например, вулканизатов) доешшют минимальных значении задолго до достижения предела набухания (ем. рис. 6,4). Студни первого тип;: — устойчивые гомогенные системы; они не имеют критических температур растноре-ния, их строение не зависит от температуры вплоть до термо-распала.

На основе древесины и синтетических полимеров в результате химико-механической переработки изготавливают древесностружечные и древесноволокнистые плиты, древеснослоистые пластики, фанеру различных сортов, фанерные трубы, гнутоклееные и цельнопрессованные изделия, клееные деревянные конструкции, древесные прессованные массы и другие изделия, находящие все более широкое применение в различных отраслях промышленности и строительства. Синтетические полимеры используются также в производстве мебели и музыкальных инструментов, облицовочных деталей, для изготовления декоративных и отделочных материалов. Применение синтетических полимеров позволяет сократить удельный расход материалов, повысить прочность, долговечность и улучшить водо-, атмосфере-, тепло- и биостойкость получаемых материалов и изделий.

Р.езино-тканевые системы являются основой таких изделий массового потребления, как шины, транспортерные ленты, клиновые ремни, обувь. Появление текстильных материалов из искусственных и чсинтетических волокон существенна повысило прочность, долговечность и эксплуатационные свойства указанных изделий. В то же время вискозные, полиамидные и полиэфирные волокна потребовали специальных мер" по обеспечению необходимой прочности связи между резиной и тканью.

Резино-тканевые системы являются основой таких изделий массового потребления, как шины, транспортерные ленты, клиновые ремни, обувь. Появление текстильных материалов из искусственных и чсинтетических волокон существенно повысило прочность, долговечность и эксплуатационные свойства указанных изделий. В то же время вискозные, полиамидные и полиэфирные волокна потребовали специальных мер по обеспечению необходимой прочности связи между резиной и тканью.

* Усталость материалов является результатом временной зависимости прочности при статических или динамических нагрузках. Однако понятие о процессах, происходящих в напряженных резинах, этим не исчерпывается, так как в резинах, особенно при многократных деформациях, происходят ускоренные необратимые изменения структуры, влияющие на прочность, долговечность и другие свойства резины.




Присутствии инициатора Присутствии карбонатов Преимущественным образованием Присутствии кислотных Присутствии комплексов Присутствии металлического Присутствии минеральной Присутствии натриевой Присутствии неорганических

-
Яндекс.Метрика